python绘制激活函数(sigmoid, Tanh, ReLU, Softmax)

import numpy as np
import matplotlib.pyplot as plt
# matplotlib的负数显示设置 
plt.rcParams['axes.unicode_minus'] = False # 显示负数
#  输出高清图像
%config InlineBackend.figure_format = 'retina'
%matplotlib inline
# 设置字体
plt.rc('font',family='Times New Roman', size=15)

# 1.1 定义sigmoid函数
def sigmoid(x):
    return 1. / (1 + np.exp(-x))
# 1.2 定义tanh函数
def tanh(x):
    return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))
# 1.3 定义relu函数
def relu(x):
    return np.where(x < 0, 0, x)
# 1.4 定义softmax函数
def softmax(x):
    return np.exp(x)/np.sum(np.exp(x),axis=0)

# 2.1 定义绘制函数sigmoid函数
def plot_sigmoid():
    x = np.arange(-10, 10, 0.1)
    y = sigmoid(x)
    fig = plt.figure()#如果使用plt.figure(1)表示定位(创建)第一个画板,如果没有参数默认创建一个新的画板,如果plt.figure(figsize = (2,2)) ,表示figure 的大小为宽、长
    ax = fig.add_subplot(111)#表示前面两个1表示1*1大小,最后面一个1表示第1个
    ax.spines['top'].set_color('none')#ax.spines设置坐标轴位置,set_color设置坐标轴边的颜色
    ax.spines['right'].set_color('none')
    ax.spines['left'].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Terry_trans

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值