随着生成式AI和AI绘画的火热,越来越多的人也希望在AI这个方向发展。但不论是转行还是入门,如何上手?这篇文章,作者整理了转行AI产品的一些经验,希望能帮到大家。
大模型的热度依然还在继续,不断有新的公司冒出,和“新”的模型发布,所谓的“百模大战”正在上演;AIGC则是当前人工智能应用的重要方向,但是作为一名产品经理,在AIGC产品中扮演的什么角色,AIGC产品经理每天的工作内容又包含哪些具体工作,作为AIGC产品经理需要具备哪些不同于之前产品经理的能力呢?带着这些问题,作为一个新人,尝试去找找答案。
第一步:BOSS上查找AIGC产品经理的招聘信息和JD
发现BOSS上AIGC产品经理的岗位确实还不少,并且相对普通互联网产品经理的薪资待遇要高上一级,但是无论是大厂还是不曾知名公司的招聘信息上,对岗位的要求描述与普通产品经理的要求却并无二异,最多是提到需要有AIGC产品经验,智能对话等项目经历。
第二步:直接问大语言模型产品
所谓大大语言模型回答的结果与BOSS上得到的答案也并没有太大区别,甚至还有些不如,也许是AIGC这个产品岗位还算比较新,或者是我的提问方式不对吧
第三步:阅读行业报告
作为一个新人,阅读市面上大公司的完整行业调研报告,我认为最直接最有效的一种方式,虽然有时报告可能带着机构或作者的偏向性和局限性,但是多读多看最后通过自己的辨别最终总是会形成自己的认知,无论是正确还是错误的。
经过一个星期工作之余时间的搜集,最终收集到100多篇关于AIGC的报告(绝对高质量),又经过一天的快速翻读,将报告进行了一个等级划分(A-B-C),选出近30分报告进行精读,个人脑子不太好使,所以边看边做笔记和重点摘抄,最后绘制了下图:
1. AI
AIGC是相对PGC和UGC而言,AIGC可以分为AI+GC,所以在了解AIGC前需要先对AI进行一个初步了解
1)AI的发展阶段:AI 的发展阶段大致可以分为三个阶段
决策式AI:
- 定义:是基于规则、知识或经验,通过对输入数据进行分析和推理,从而做出决策或推荐的人工智能系统。
- 应用:用于专业领域,例如医学、金融、法律等,其目的是为了支持决策过程和提高决策效率。
生成式AI:
- 定义:基于机器学习或深度学习等技术,从大量数据中学习并生成新的数据或内容的人工智能系统
- 应用:用于自然语言处理、图像处理、音频处理等领域,其目的是为了生成高质量的内容和实现自动化创作
通用型AI:
- 定义:具有类似人类智能的广泛能力的人工智能系统
- 应用:可以像人类一样进行感知、推理、学习、决策、规划等多种任务,能够在不同的领域和情境中灵活地应对和适应。
2)AI的知识体系
AI主要包含六大学科知识体系:机器视觉、自然语音、认知推理、机器人学、博弈理论、机器学习等
3)AI的能力体系
AI在完成任务的过程中大致需要具备以下七种能力:感知、认知、决策、执行、交互、学习、情感
4)AI的三大要素
所有AI产品和应用的顺利运行都离不开数据、算法和算力
5)AI模型的部署
算法模型的生成和部署主要包含七步:数据准备、提取特征、选择算法、模型训练、模型评估、模型调优、模型部署
2. AIGC
1)AIGC的发展阶段
- 智能数字内容孪生:建立现实世界到数字世界的映射,将现实世界中的物理属性和社会属性高效、可感知地进行数字化
- 智能数字内容编辑:建立数字世界与现实世界的双向交互。在数字内容孪生的基础上,从现实世界对虚拟数字世界中内容的控制和修改,同时利用数字世界高效率仿真和低成本试错的优势,为现实世界的营业提供快速迭代能力
- 智能数字内容创作:让人工智能算法具备内容创作和自我演化的能力,形成的AIGC产品具备类似甚至超越人的创作能力
2)生成内容
AIGC可生成内容类型不限于:文本、音频、图片、视频、三维结构、策略逻辑、代码呈现、基因序列等
3)AIGC产品的商业
目前AIGC产品主要以MaaS(模型即服务)服务进行收费,收费渠道主要包含:按模型训练收费、按具体属性收费、按软件订阅服务收费、按产出内容收费、作为底层平台收费等
4)AIGC产业组成
- 基础设施层:AI芯片、AI计算集群、AI云服务
- 算法模型层:生成式通用大模型、行业小模型
- 场景应用层:文本、图像、视频、三维结构….
5)AIGC产品的底层技术
- 基础生成算法模型:支持 AIGC 用于生成文字、代码、图像、语音、视频、3D 物体等各种类型的内容和数据。
- 预训练模型:引发 AIGC 技术能力的质变,能够适用于多任务、多场景、多功能需求
- 多模态技术:将不同类型的数据进行互相转化和生成的技术,以及多模态生成模型等,进一步增强了 AIGC 模型的通用化场景应用能力。
3. 生成类容类型:AIGC中C的类型
1)文本生成
发展路线(模型):循环神经网络-Transformer-ChatGPT
生成方式:根据问答生成、根据关键词生成、根据图像生成、根据视频生成、根据文本生成
产品应用场景:智能对话、语言生成、内容推荐、辅助写作、语音翻译
产品代表:ChatGPT
2)音频生成
发展路线:拼接合成阶段-参数合成阶段-端到端合成阶段
生成方式:根据文字信息生成、根据音频信息生成、根据肌肉震动生成、根据视频内容生成
产品应用场景:语音识别、语音合成、语音交流、语音转换、语音增强、语音修复、音乐生成
产品代表:DeepMusic
3)图像生成
发展路线:GAN生成阶段-自回归生成阶段-扩散模型阶段
生成方式:根据文字信息生成、根据图片信息生成(二值图、灰度图、索引图、RGB图)
产品应用场景:图像分类、图像分割、图像生成、图像风格转换、图像修复、图像超分辨率
产品代表:Midjourney
4)视频生成
发展路线:图像拼接生成阶段-GAN/VAE/Flow-base模型阶段-自回归和扩散模型阶段
生成方式:剪辑生成、特效生成、内容生成
产品应用场景:视频内容识别、视频编辑、视频生成、视频增强、视频风格迁移
产品代表:Make-a-Video
5)三维图像生成
发展路线:显性数据驱动型-隐性数据驱动型
生成方式:自然语言生成、二维图像生成
产品应用场景:游戏开发、建筑设计、电影动画制作、虚拟现实、工业制造、医疗医药、教育培训
产品代表:Make-a-Video
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。