什么是AI智能客服?
Ai人工智能客服是新一代的智能化在线客服系统,在传统的客服功能中添加了大量的AI算法逻辑,实现了智能接待、自动客户资源获取、智能资源流动和分配的效果。可以大大提高企业的客服接待效率,解放人工客服的精力,大幅度降低大量人工客服的运营成本。
AI智能客服的应用潜力
《2024年中国智能客服市场报告》显示,中国智能客服市场规模在2023年达到了86.9亿元,按照历年的增长趋势,预计到2027年将增长至181.3亿元,年增长率高达22.1%。从这一系列的增长数据来看,大模型正在推动智能客服市场飞速增长。
AI智能客服的优势
AI客服系统具备强大的语义理解能力、智能推荐功能和自我学习能力。这些技术优势使得AI客服系统能够在以下几个方面超越传统客服模式:
-
高效响应:AI客服系统能够实现24小时不间断服务,无论客户在何时何地发起咨询,都能迅速得到响应。这种即时性大大提升了客户满意度和信任度。
-
精准理解:通过NLP技术,AI客服系统能够准确理解客户的语义和情感,即使面对复杂或模糊的表述,也能给出恰当的回应。这种精准性使得服务过程更加顺畅,减少了误解和纠纷。
-
个性化服务:AI客服系统能够根据客户的购买历史、浏览行为等数据,分析客户的兴趣和偏好,从而提供个性化的服务推荐和解决方案。这种个性化服务不仅提升了客户满意度,还有助于增加客户粘性和忠诚度。
-
自我学习:AI客服系统具备自我学习能力,能够通过不断与客户的交互来优化自身的算法和模型,提升服务质量和效率。这种自我进化能力使得AI客服系统能够持续适应市场需求的变化,保持竞争力。
AI大模型智能客服的商业应用
AI大模型客服系统,通过自然语言处理、大数据分析、机器学习等技术,在许多行业中有广泛的应用,其效果令人称赞。如下表列出了部分行业的应用及所带来的价值。
AI替代人工,是挑战,也是机会
客服行业的变迁只是冰山一角,AI在职场中的存在感只会越来越强。随着AI逐步成为企业的标配,每个岗位都需要了解AI的基本操作和应用逻辑。
产品经理需要了解AI的能力边界,才能设计出真正智能化的产品;运营人员需要学会用AI工具进行数据分析和用户洞察,提升营销效果;客服人员掌握AI的应用,才能帮助智能客服走出“人工智障”的窘境,在职场中拥有更多的竞争力和发展空间。能够驾驭AI、懂得与AI协作的人,将成为职场中更有竞争力的存在。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。