Python在大数据处理中的实践运用,实践操作精选

本文探讨了Python在大数据处理中的应用,重点介绍了Scrapy爬虫框架的使用,以及数据清洗的重要性。Scrapy用于爬取网站内容,提取结构化数据,适合数据挖掘和信息处理。在数据清洗环节,提到了删除重复数据、修复结构错误和处理缺失数据的方法。Python数据分析工具如Numpy和Pandas则在数据预处理和分析中起到关键作用,而数据可视化如Matplotlib则帮助呈现清晰有效的信息。
摘要由CSDN通过智能技术生成

         大数据基于被分析的海量数据。如何有效地提取和利用这些信息成为一个巨大的挑战。雅虎、谷歌等搜索引擎可以辅助检索数据和信息,但存在一定的不足。搜索引擎返回的结果信息量涉及方方面面,没有分类,针对性不强;造成搜索引擎服务器资源与无限网络数据资源之间的冲突;针对一般搜索引擎存在的问题,针对特定主题需求,针对网络资源进行定向爬取的聚焦爬虫应运而生。在实现网络爬虫时,他尽量保证只爬取和需求相关的网页信息并进行处理和过滤。根据所需的网页分析算法过滤与主题无关的链接,保留有用的链接并将其放入URL队列等待被抓取。爬虫爬过的所有网页都会被系统存储起来进行一定的分析、过滤和索引,以供后续查询和检索。

正题

Python 爬虫 scrapy 框架        

        Scrapy 是利用 Python 语言编写的网络爬虫框架。一个目的为了爬取网站内容,提取结构性数据而编写的开源爬虫应用框架。可以运用在包括数据挖掘,信息处理或者存储历史数据等一系列的程序中。Scrapy 最初的设计目的是页面抓取,也可以是用来获取各种 API 返回的数据。在 scrapy 项目中,只需写入定制的爬虫规则、运行即可快速获得所需要的数据信息。爬取网页内容代码如下: 

def s_requests(self):

url = 'http://weburl:port' 

headers = { 

'Content-Type' : 'application/x 一 www-form-urlencoded ;        charset=UTF-8 

} yield scrapy.FormRequest ( url=url ,

headers=headers , 

callback=self.get_city)

网页爬取内容中的字段处理 def test(d_list,field):

f_list=[]

t_temp =d_list[field].values

for i i_temp:

temp = i.split(' ') 

if len(temp) > 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python分享阁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值