​科普版大模型介绍: 在特别大的数据里面,挖呀挖呀挖

花园种花之模型版

有首爆火的儿歌《花园种花》,里面唱到:

在小小的花园里面,挖呀挖呀挖,种小小的种子,开小小的花。

在大大的花园里面,挖呀挖呀挖,种大大的种子,开大大的花。

在特别大的花园里面,挖呀挖呀挖,种特别大的种子,开特别大的花。

在小小的花园里面,挖呀挖呀挖,种小小的种子,开小小的花。

把这首歌改编成人工智能中模型和数据的关系,也非常应景:

在小小的数据里面,挖呀挖呀挖,用小小的模型,开小小的花。

在大大的数据里面,挖呀挖呀挖,用大大的模型,开大大的花。

在特别大的数据里面,挖呀挖呀挖,用特别大的模型,开特别大的花。

在小小的数据里面,挖呀挖呀挖,用小小的模型,开小小的花。

这段话描述了在不同规模的数据集,以及相应的模型规模下,数据挖掘和模型训练的关系。 在小数据集中,使用小模型可能更灵活、更容易泛化,而在大规模数据集中,使用大模型可能更有助于捕捉更复杂的模式。

今天我们就聊聊特别大的模型,开特别大的花。

什么是大模型

机器学习是一种让计算机从数据中学习规律和知识的方法,它是人工智能的一个重要分支。

机器学习的目的是让计算机能够自动地完成一些人类的智能任务,比如识别图像,理解语言,推荐商品等等。

要实现这些任务,计算机需要有一个模型,来描述数据之间的关系和逻辑。模型是一种对现实世界的简化和抽象,它可以用数学公式、图形、代码等方式来表示某些复杂的逻辑。

大家如果需要了解模型的基础知识,欢迎阅读之前的文章『机器学习与人工智能中的模型有形状吗?』。

我们通常所说的大模型,完整的名字应该是大语言模型( large language model ,LLM)。大模型是具有大量参数和层数的复杂的AI模型,这些模型在处理和生成文本等复杂任务时更具出色表现。

我们解释一下模型的参数和层数这两个概念。

模型的参数是模型在训练过程中学到的关键信息,是模型的权重和偏差等数值的集合。在神经网络中,权重决定了神经元之间的连接强度,从而影响信息在网络中的传递和处理。因此模型的权重可以看作是对不同输入特征重要性的度量。

例如,下面的图展示了多种神经网络的架构,其中两个神经元通过一条线连接起来,每一条线表示一个权重。

Image Source: https://tikz.net/wp-content/uploads/2021/12/neural_networks.gif

大模型训练的数据量很大、也更复杂,所以需要学习和存储的内容也就更多。大模型通常包含数百万到数十亿的参数,这使得它们能够更有效地学习复杂的模式和数据表示,从而提升其对数据的理解和适应能力。

就像我们上面看到的,神经网络是一个分层的结构,通常包括输入层、隐藏层(可以有多层)、输出层,数据从输入层经过隐藏层最终到达输出层。每一层都执行特定的转换和特征提取。

模型的层数是指模型中堆叠的神经网络层的数量。具有多层结构的神经网络通常被称为深度神经网络。深度学习通过增加网络的深度,能够更有效地学习数据的抽象表示。这些模型的层数可以从几十到几百不等。

因此,大模型不仅具有巨大的参数量,而且模型的层数也相对较多。

为了便于大家理解,我们做个形象的比喻。

如果将一个模型看成一座建筑话,层数可以表示建筑的高度,因为层数越多,建筑就越高,也就越能高瞻远瞩,看到远处的风景。

参数可以表示建筑的面积,因为参数越多,建筑就越大,也就越能容纳更多的功能和内容。

例如,大模型GPT-3就像一座高达96层,面积达175亿平方米的摩天大楼,它可以处理各种各样的语言任务,如文本生成、问答、摘要等。

而另外一种大模型BERT就像一座高达24层,面积达3.4亿平方米的高层建筑。

大模型的优势在于它们能够捕捉更复杂的数据关系和语义,从而在各种任务上取得更好的结果。然而,它们也需要更多的计算资源进行训练和推理。

这些大模型在大量的文本数据上进行了训练,可以理解语言结构、语法、上下文和语义联系。

大模型的架构:Transformer及注意力机制

刚才我们说模型大小与参数数量相关。更大的模型拥有更多的参数,可以存储更多的信息和复杂的模式。但是不是只要模型足够大,就一定能达到好的性能呢?

不完全是,因为决定模型性能的还有一个很重要的因素:模型架构。

模型架构指的是机器学习或深度学习模型的整体设计和结构,包括模型中的各个组件、层次结构以及它们之间的连接方式。

这就好比是一座建筑物的设计图纸,规定了建筑的整体结构和各个部分的布局,包括楼层数,房间的数量、每个房间的大小等等。同样,机器学习模型的架构也决定了模型的整体形状和组成部分。

选择合适的模型架构可以提高模型在特定任务上的性能,并促使模型更有效地学习和推断。这就像建造不同类型的建筑一样,例如设计一座图书馆,我们需要考虑到书架的布局、舒适的阅读空间等等。

在模型架构方面,大模型普遍采用Transformer架构。Transformer是一种深度学习模型架构,最初由Google在2017年提出,并在机器翻译任务中取得了显著的成功。

Transformer通过引入注意力机制,在处理序列数据时能够更好地捕捉长距离的依赖关系,从而实现文本的生成和理解。例如,在理解一个句子时,前文的内容可能对后文的理解产生重要影响,需要模型能够捕捉这种长距离的语义依赖。

注意力机制(Attention Mechanism)是一种数据处理方法,它可以让模型自动学习和计算输入数据对输出数据的贡献大小,从而突出重要的信息,忽略不相关的信息。

注意力机制的灵感来源于人类的视觉和阅读过程,人类在观察一幅图片或一段文字时,会有选择性地关注某些部分,而忽略其他部分,这样可以提高效率和准确性。就像我们在观看蒙娜丽莎时,目光不由自主被她迷人的微笑所吸引。

我们来举两个关于注意力机制的例子。

文本例子

假设我们有一个简单的文本例子,其中一个句子描述了一个场景,包括多个元素。我们将使用注意力机制来理解句子中的重要部分。

原始文本:“在阳光明媚的早晨,猫坐在窗台上,看着外面的花园,树上的鸟儿在欢快地歌唱。”

在注意力机制下,模型在生成输出(例如,翻译成另一种语言)时,将会关注所输入句子中不同单词的重要性。

例如这段文本的英文翻译为:

- 输入文本:“在阳光明媚的早晨,猫坐在窗台上,看着外面的花园,树上的鸟儿在欢快地歌唱。”

- 输出翻译:“On a sunny morning, the cat sits on the windowsill, looking at the garden outside, while birds on the tree sing cheerfully.”

在生成输出的过程中,注意力机制指引模型重点关注输入文本中最关键的部分。例如,在翻译过程中,当生成英文单词"cat"时,模型可能会更关注输入中描述“猫坐在窗台上”的部分,因为这对于正确理解句子的含义更重要。

在注意力机制下,模型更有针对性地处理输入文本的不同部分,这有助于提高所生成输出的准确性。这类似于我们在阅读时更注重理解句子中的重要信息,从而更有效地捕捉文本中关键内容。

图像例子

再举一个计算机视觉的任务,我们在输入图像中同时包含猫、树和小鸟,而我们的任务是判断图片中没有没猫。

对于使用注意力机制的图像分类模型,在处理图像时动态调整每个区域的权重,以关注对于猫类别更重要的局部画面。

例如,当分类器决定图像中是否存在猫时,注意力机制可能突出显示图像中猫的脸部和身体,而对于其他区域(如树和汽车)的关注程度降低。

Transformer模型的引入对深度学习领域带来了革命性的影响。

Transformer通过注意力机制,使模型能够在处理序列数据时动态地关注不同位置的信息。这种机制有效地解决了长距离依赖关系的问题,极大地推动了自然语言处理和其他领域的发展,成为深度学习领域的重要里程碑。

因此,可以说Transformer架构的创新为当今大模型和生成式AI的繁荣创造了基础,成为深度学习领域取得巨大进展的关键因素之一。

Transformer模型的示意图

作为科普文章,今天我们不讨论技术细节,不过了解一下Transformer模型的概貌还是有必要的。

在Transformer模型中,有两个主要组件:编码器和解码器。

编码器(Encoder):

编码器的任务是将输入文本(源语言)的词语转换成数学表示,即向量。

注意力机制是编码器的关键部分,它在处理每个输入位置时,不是固定地关注整个序列,而是关注输入序列的不同部分,以便捕捉输入文本的语义和特征。

解码器(Decoder):

解码器的任务是根据编码器的输出和目标文本(目标语言)生成新的向量。

解码器同样使用注意力机制,另外还会关注编码器的输出,确保生成的词语考虑了源语言的上下文。

总体而言,Transformer模型通过这种编码器-解码器结构,成功地捕捉了长距离依赖关系,使其在自然语言处理任务中有出色的表现。

到这里大家可能有一个疑问,既然大模型都使用transformer,那他们模型架构是不是一模一样呢?

其实不然。尽管大部分大型模型都使用了Transformer架构作为基础,但它们之间仍然存在一些关键的区别,这些区别通常体现在架构的细节和特定任务的定制化上。导致模型差异的因素包括:

模型深度和宽度:

- 不同的大型模型可能有不同的深度和宽度,即层数和每层的隐藏单元数。更深的模型可能有更强大的表示能力,但也可能更难训练,需要更大的计算资源。

多头注意力机制的变体:

- Transformer架构中的注意力机制可以有不同的变体,如多头注意力(Multi-Head Attention)。一些模型可能采用特定的多头注意力机制,以更好地适应特定的任务或数据结构。

在传统的注意力机制中,模型在处理输入序列时只能关注其中的一个位置,而多头注意力通过引入多个并行的注意力头,每个头都学习不同的关注权重,从而允许模型对不同的位置同时进行关注。

我们还是打个比方,传统的注意力机制就像是一个专注于读取一篇文章的学生,他只能聚焦于文章中的一个句子或一个段落,无法同时理解文章中不同部分的内容。而多头注意力则类似于一组阅读团队,每个成员负责关注文章的不同部分。

这样,整个团队可以同时阅读并理解文章的多个方面,最后将各自的理解综合起来,形成对整篇文章更全面的理解。多头注意力通过引入这种协同工作的方式,使得模型能够在同一时间内处理和理解输入序列的多个方面,提高了模型在处理复杂任务时的效率和准确性。

除此之外前馈神经网络结构、层间连接方式也可以有很多变化。

总而言之,大型模型在使用Transformer架构的基础上,通过对架构的微调、任务定制化以及参数设置的不同,实现了各自模型的独特性。这种差异化使得不同的大型模型在面对不同任务时能够更好地发挥各自优势。

也就是这些大模型虽然师出同门,但是各有各的拿手绝活,在不同的主场舞台上独挑大梁,展现着独特的技能和风采。

大模型的典型案例

我们来看几个经典的大模型。

GPT-4

GPT-4是由OpenAI开发的一种大型多模态语言模型,它可以同时理解和生成文本、图像、视频、音频和代码等多种类型的信息。GPT-4据称有120层,包含1.76万亿参数,是世界上最大的语言模型之一。GPT-4可以根据给定的文本生成各种类型的文本,例如对话、摘要、故事、代码、歌词等。GPT-4还可以回答各种问题,例如常识、事实、推理等。

GPT-4基于自回归的Transformer架构,使用了大规模的语料库进行预训练,然后可以在不同的下游任务中进行微调或零样本学习。GPT-4一次的训练的成本高达6300万美元。有钱有GPU的感觉真好~~

风靡全球的聊天服务ChatGPT目前的模型版本便是GTP-4,它可以与用户进行自然、有趣的对话,回答用户的各种问题,帮助用户完成各种任务,或者提供创造性的灵感。ChatGPT还可以根据用户的描述生成新的图像。

Gemini

Google Gemini 模型是由 Google DeepMind 开发的一种人工智能模型,它可以同时理解和生成文本、图像、视频、音频和代码等多种类型的信息。Gemini 模型使用了大量的数据和计算资源来训练,拥有 1200 亿个参数,是世界上最大的多模态语言模型之一。Gemini 模型在多个领域和任务中取得了优异的性能,甚至超越了人类专家的水平。

Google Gemini 有三种版本:Ultra、Pro 和 Nano。

- Gemini Ultra 是最大的版本,具有最强大的性能。它仅用于 Google 内部,例如 Google 搜索、Google 广告和 Google Duet 等服务。

- Gemini Pro 是面向开发者的版本。

谷歌开发的Bard聊天机器人底层使用的模型即为 Gemini Pro,有图有真相。

ERNIE

ERNIE 4.0是百度最新的大模型,它是一个超大规模的多模态模型,可以接受文本、图像、音频、视频和知识图谱等多种类型的输入,产生文本、图像和音频等多种类型的输出 。

文心一言是百度的生成式 AI 产品,它使用了 ERNIE 作为底层模型。

PanGu-Σ

PanGu-Σ是华为开发的一种具有稀疏架构的大型语言模型,它使用了1.085万亿个参数,是世界上最大的语言模型之一。PanGu-Σ可以理解和生成文本、图像、视频、音频和代码等多种类型的信息,在多个中文自然语言处理的下游任务和应用中取得了优异的性能。

结语

在特别大的数据里面,挖呀挖呀挖,用特别大的模型,开特别大的花。

大模型是当今人工智能领域的热门话题,它们在处理和生成文本等复杂任务时展现出惊人的能力和创造力。

大模型的发展离不开Transformer架构和注意力机制的创新,以及大量的数据和计算资源的支持。

大模型的出现,让我们看到了人工智能的无限可能,同时也带给我们更多的探索空间和思考,例如大模型是如何学习和理解语言的,它们是否真的具有智能,它们对人类的生活和社会会产生什么样的影响等。

希望这篇文章能够帮助你对大模型有一个初步的认识,激发你对人工智能的兴趣和探索。

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

-END-


👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值