今天分享的是AI系列深度研究报告:《AI大模型专题:2023年大模型应用场景及AI安防领域行业格局分析报告》。
报告共计:34页
海量/完整电子版/报告下载方式:公众号《人工智能学派》
大模型突破技术瓶颈,有望加速 AI 场景落地
我们认为,AI在安防行业商业化落地进程中主要存在两大痛点: 第一,传统机器学习模型精度不足;其次,模型限制成为大数据发展的挑战之一,模型下游应用场景有限。
随着 AI 时代到来,我们看到如下趋势: 通过突破技术端瓶颈,或将显著提高模型精度并降低人工标注成本,拓宽下游应用领域,加速场景落地。具体而言,(1)图像机器学习+大小模型协同进化,模型精度将显著提升;(2)大模型有效降低标注成本,助力下游场景日渐丰富;(3)多模态驱动模型精度提升,音频技术助力智能安防。
图像机器学习 +大小模型协同进化,模型精度显著提升
我们认为,图像机器学习+注意力机制将提高精度并降低人工标注成本,通过大小模型协同进化,拓宽下游应用场景。
具体而言:(1)在图像机器学习+注意力机制赋能下,AI 大模型对于复杂图片和场景的识别能力有望显著提升,降低人工标注成本,提高大模型自我训练的精度;(2)大模型通过知识蒸馏、量化等方式,在边侧将其沉淀的知识与推理能力向小模型输出,达到训练小模型的目的。(3)小模型向大模型反馈算法和执行成效,帮助大模型迅速收敛。通过上述流程,将实现大小模型在云边端协同进化。
图像机器学习+注意力机制实现降本提精,图像交互方式或被颠覆
Clip 模型是 OpenAI 于 2021 年初发布的开源神经网络,在无需人工标注标签的图像识别上性能卓越,Clip 开源的特点或将加快国内厂商技术追赶图像机器学习进度,为后续机器视觉大规模商业化打下技术基础。
Clip 带来图像机器学习关键节点,机器视觉大规模商业化时间线可参考ChatGPT。 Clip 技 术突破带来迅速的下游应用渗透,在 Clip 发布两年后,2022 年 11 月、2023 年 3 月 ChatGPT 与 GPT-4 分别发布,图像机器学习使得 AIGC 大规模商业化成为了可能。参考 ChatGPT, 我们认为图像机器学习的技术触角有望延展到机器视觉 2B 应用端:(1)短期:可实现降低成本、提高精度;(2)中长期:人和图像数据的交互方式或被颠覆。
短期:图像机器学习摆脱人工标注,将降低标注成本、提升识别精度。 1) 实现图像的机器学习将减少 AI 图像视频判断对人工标注的依赖,降低数据成本。2)在识别成本下降的同时,机器学习将会提升图像标签的识别精度,提升数据挖掘的维度,无法被人眼识别的数据将得到被挖掘的可能,拓宽下游机器视觉 2B 应用场景。
长期:在摄像头海量数据支持下,AI+ 安防的交互方式或被颠覆。**摄像头作为目前视频、 图像信息的重要接收窗口,在日常生活中具备较高覆盖度,可以从边端侧为 AI 分析提供海量数据源,是 AI 自我学习视频图像数据的重要抓手。通过机器学习,如今已经实现通过文字描述查找视频关键帧等应用,随着机器学习技术的进一步迭代,深入挖掘更多图像视频的视觉信息,我们认为在 AI+安防领域有望创造更多人与深度视觉数据互动的方式,如自动生成监控视频的文字描述、选择关键片段替代原视频等。
实现不同模态信息提取,注意力机制助力图像识别的机器学习。 在图像的机器学习中,使用了注意力机制,用于提取图像和文本的特征表示,从而实现图像和文本之间的相似度计算。模仿人类视觉选择性关注信息、忽略其他可见信息的特点,注意力机制是一种抑制无用特征、提高对有用特征的关注度的算法。在 2017 年由 Google 提出可以实现注意力机制的神经网络架构 Transformer 后,注意力机制经过发展,已经可以完成音频、图像、视频、 自然语言等不同模态的数据特征抓取任务,实现了多模态的信息提取,成为 Clip 模型为代表的图像机器学习的重要基础之一。
注意力机制原理如下: 注意力机制共包含三个参数:查询向量(query vector),键向量(key vector),和值向量(values vector),实现注意力机制的核心在于对于给定输入图片,实现 Q、K、V 值的不断重置。以面部识别为例,将图像分割成数个部分,把各模块(眼睛、皮肤、胡须等)按序编码得到一系列 Q、K、V 向量,依次计算每一部分 Q 向量与所有特征 K 向量(K 向量为所有 Q 向量的集合)的相似度,即注意力权重系数,并将系数与原特征向量 V(V 在第一次迭代中=K)进行加权求和,重新生成携带关联性信息的该特征向量(V^1), 例如嘴巴(关联性程度依次为胡须、皮肤等)。
在识别图片过程中,注意力机制不断选出与此次迭代的 V 相关性最高的特征,不断更新 Q、 K、V 直到图像中的所有特征都被识别完毕。例如,在对给定男性肖像图片进行识别时, Transformer 框架将综合重点特征描述,通过多次迭代推导出最终的识别结果:男性。
报告共计:34页
如何学习大模型 AGI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
-END-
👉AGI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉AGI大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉AGI大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓