一文读懂 10 个 AI 大模型常见名词术语(模型参数、上下文长度、量化、蒸馏、Token、MOE、RAG、RL、智能体、具身智能)

在人工智能大模型技术迅猛发展的今天,越来越多的人开始关注和使用 AI 大模型。然而,面对模型参数、上下文长度等一系列专业名词术语,许多人常常感到困惑。这些术语是理解 AI 大模型运行机制和性能表现的关键,掌握它们,能让我们更好地与 AI 大模型 “对话”。接下来,就为你详细解读 10 个 AI 大模型常见的名词术语。

一、模型参数

模型参数可以理解为 AI 大模型的 “知识储备量”。在深度学习模型中,参数是模型在训练过程中学习到的数值,它们决定了模型的结构和功能。

请添加图片描述

以 GPT-3 为例,它拥有 1750 亿个参数,庞大的参数数量使其能够学习到海量文本中的复杂模式和语义关系,从而具备强大的语言理解和生成能力。模型参数越多,理论上模型能够学习到的知识就越丰富,处理复杂任务的能力也就越强,但同时也会增加训练和运行模型所需的计算资源和时间成本。

请添加图片描述

二、上下文长度

上下文长度指的是 AI 大模型在处理文本时,能够参考的前文和后文的长度范围。简单来说,就是模型 “记住” 的文本量。例如,当你让大模型续写一个故事时,上下文长度决定了它能依据前面多少内容来进行创作。

请添加图片描述
如果上下文长度较短,模型可能会忽略一些重要的情节线索,导致续写内容逻辑不连贯;而较长的上下文长度,能让模型更好地理解语境,生成更贴合需求的内容。目前,一些先进的大模型正在不断突破上下文长度的限制,以提供更连贯、准确的输出。

三、量化

请添加图片描述

量化是一种对模型参数进行优化的技术手段。它通过减少参数的表示精度,将原本高精度的数值(如 32 位浮点数)转换为低精度的数值(如 8 位整数),从而降低模型占用的存储空间和计算资源。这就好比把一本厚厚的书进行压缩,虽然内容有所精简,但核心信息得以保留。量化后的模型在保持相近性能的前提下,能够更快速地在硬件设备上运行,尤其适合在资源有限的移动设备或边缘设备上部署。

四、蒸馏

蒸馏是一种模型优化技术,它的目的是将一个复杂的大型模型(教师模型)的知识 “传授” 给一个相对简单的小型模型(学生模型)。

请添加图片描述
想象一下,经验丰富的老师把自己的知识和经验传授给学生,学生虽然没有老师那么渊博,但也能快速掌握关键知识。通过蒸馏,小型模型可以在减少计算资源消耗的同时,尽可能保留大型模型的性能,从而实现高效的推理和应用。

请添加图片描述

五、Token

请添加图片描述

Token 可以看作是 AI 大模型处理文本的基本单元。在对文本进行处理时,模型会将文本拆分成一个个 Token。例如,对于句子 “我爱人工智能”,可能会被拆分为 “我”“爱”“人工”“智能” 等 Token。不同的语言、不同的模型对 Token 的划分方式可能有所不同。Token 的数量和处理方式直接影响模型对文本的理解和处理效率,模型通过学习 Token 之间的关系来生成有意义的输出。

六、MOE(混合专家模型)

MOE 是一种独特的模型架构,它将多个不同的 “专家” 模型组合在一起。每个 “专家” 模型擅长处理特定类型的任务或数据。当模型接收到任务时,会根据任务的特点动态地选择合适的 “专家” 来处理,就像一个大型医院里,不同的病症由不同的专科医生来诊治。这种架构能够充分发挥各个 “专家” 的优势,提高模型的整体性能和效率,尤其适用于处理复杂多样的任务。

请添加图片描述

七、RAG(检索增强生成)

RAG 是一种结合了信息检索和文本生成的技术。在传统的大模型中,模型的回答基于其训练数据中学习到的知识。

请添加图片描述
而 RAG 在生成回答之前,会先从外部知识库或语料库中检索相关信息,然后结合检索到的内容和自身的知识进行回答。例如,当用户询问某个专业领域的最新研究成果时,RAG 技术可以从最新的学术论文库中检索相关内容,使模型生成的回答更准确、更具时效性。

八、RL(强化学习)

强化学习是一种让 AI 模型通过与环境进行交互来学习的方法。模型在环境中采取行动,并根据行动的结果获得奖励或惩罚。模型的目标是通过不断尝试,学习到能够获得最大奖励的行动策略。
请添加图片描述

比如,在训练一个机器人走迷宫的模型时,机器人每成功前进一段距离就会获得奖励,撞到墙壁则会受到惩罚,通过反复尝试,机器人就能学会找到走出迷宫的最佳路径。在大模型中,强化学习可以用于优化模型的决策和生成过程,提高模型的性能和适应性。

九、智能体

请添加图片描述

智能体是指能够感知环境、自主决策并采取行动以实现特定目标的 AI 实体。它具有一定的自主性和智能性,可以根据环境的变化和自身的目标进行灵活的行为调整。例如,智能家居系统中的智能语音助手就是一个智能体,它能感知用户的语音指令,通过分析和决策,控制家中的各种智能设备,实现用户的需求。智能体在多个领域都有广泛的应用,如智能客服、自动驾驶等。

十、具身智能

请添加图片描述

具身智能是指赋予 AI 系统以实体身体,并让其在真实世界环境中通过与环境的交互来学习和完成任务的能力。它强调身体与智能的紧密结合,认为智能的发展离不开身体在环境中的感知和行动。比如,具备具身智能的机器人可以在复杂的环境中移动、抓取物体、完成各种任务,通过不断地与环境互动,积累经验,提升自身的智能水平。具身智能是 AI 领域一个新兴且极具发展潜力的方向,有望为人工智能带来新的突破。

通过对这 10 个 AI 大模型常见名词术语的了解,相信你对 AI 大模型的认识又加深了一步。随着 AI 技术的不断发展,这些概念也将不断演变和拓展,持续关注它们,能让我们更好地跟上人工智能时代的步伐。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值