深度学习中,plot_model报错解决办法

文章介绍了在运行plot_model时遇到的问题及解决方案,包括下载Graphviz的64位Windows版本,通过pip使用清华源安装pydotplus和graphviz,并展示了如何归一化MNIST数据以及构建和可视化一个简单的神经网络模型。
摘要由CSDN通过智能技术生成

运行plot_model会报错,最后发现需要先下载其他文件才能正常运行

1、下载Graphviz

往下滑,滑到windows的exe64位下载

迅雷下载会更快一点,记得 添加环境变量

2、pip下载

后面的-i是选择安装源(默认安装源是外网,下载会比较慢)

pip install pydotplus -i https://pypi.tuna.tsinghua.edu.cn/simple 


pip install graphviz -i https://pypi.tuna.tsinghua.edu.cn/simple 

(可以考虑添加国内的pip源)

如清华源:https://pypi.tuna.tsinghua.edu.cn/simple

# 查看pip安装源
pip config list
# 清华源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install pydotplus


 pip install graphviz

3、运行代码

前三行导入相应的库和包

import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras import datasets,layers,Sequential,losses,optimizers,utils

(x_train,y_train),(x_test,y_test)=datasets.mnist.load_data()
x_train,x_test=x_train/255.0,x_test/255.0

model = Sequential([
    layers.Flatten(input_shape=(28,28)),       # 28*28是一个图片的尺寸
    layers.Dense(128,activation="relu"),
    layers.Dense(10,activation="softmax")    
                            ])
utils.plot_model(model, to_file='model.png')

(x_train,y_train)这一行是将datasets数据集中的数据进行赋值,如果没有下载数据,则会进行下载

下面一行的x_train,x_test是归一化处理,为了方便像素处理(0代表黑,1代表白)像素大小在0和1之间

model = Sequential这一行是嵌套函数,内嵌两个隐藏层

最后这个utils.plot_model这个就是plot_model的正常运行格式

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

crownyouyou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值