每日一练 | Day 13

198. 打家劫舍

题目链接

https://leetcode.cn/problems/house-robber/

相关算法

数组、动态规划

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

数据范围:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 400

解题思路

本题是很经典的动态规划题,对于动态规划题,我们要先定义子问题然后构造 dp 数组。对于题目偷所有房子(n 间房子)最多能够偷到多少钱,我们可以化为“从 k 间房子中最多能够偷到多少”,然后构建 dp 数组,dp[k] 就表示这个子问题的解,当 k == n 时,有 dp[n] 为最后的解。
在这里面,我们总共可以拆分出 n 个这样的子问题,每个子问题都可以根据前面的子问题得出解,根据这个,我们就可以得到子问题之间的递推公式。题目中说不能偷相邻的房屋,因此如果偷第 k 个房屋,就不能去偷第 k - 1 个房屋了。我们可以得到关系,dp[k] = Math.max(dp[k - 2] + nums[k], dp[k - 1]),接下来,再补上 k = 0k = 1 的情况即可,k = 0 时,显然最大值就是 nums[0]k = 1 时,最大值就是 nums[0]nums[1] 中的最大值,至此,完成。

完整代码

class Solution {
    public int rob(int[] nums) {
        int len = nums.length;
        if (len == 1) {
            return nums[0];
        }
        int[] dp = new int[len];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);
        for (int i = 2; i < len; i++) {
            dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[len - 1];
    }
}
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值