目录
背景:
速算技巧也被称为快速计算方法或速算法,速算技巧的学习应用不仅能够提高个人的计算速度和准确性,还有助于培养逻辑思维能力和数学兴趣,虽然速算技巧可以简化计算过程,但它们通常建立在坚实的数学基础上,因此在学习速算之前,理解和和掌握基本的数学概念和运算规则是非常重要的。
过程:
头同尾补:
适用于两位数乘法。具体来说,“头同尾补”指的是两个乘数的十位数字相同(即“头同”)并且个位数字相加正好等于十(即“尾补”)
速算口诀((头+1)x头 尾x尾(占两位))
步骤一:
1.式子为61x69,被乘数为61,乘数为61,被乘数与乘数的十位数相同、个位数相加为10互补,因此符合我们的条件
步骤二:
2.根据口诀“头+1”,式子里头数为6,所以6+1
步骤三:
3.根据口诀中“(头+1)x头”,将上个步骤的计算结果和头数相乘,上个步骤的计算结果为7,头数为3,所以6x7
步骤四:
接着根据口诀“尾x尾(占两位)”,被乘数的尾数为1,乘数的尾数为9,所以我们用1x9
步骤五:
随后将第三步和第四步的计算结果一次写出来,得到计算结果
头补尾同:
两个乘数的十位数相加等于10(即“头补”),且个位数相同(及”尾同”)
速算口诀:((头x头)+尾 尾x尾)
步骤一:
式子为28x88,被乘数为28,乘数为88,被乘数和乘数的十位相加为10互补、个位数相同,符合条件
步骤二:
按照口诀“头x头”,在例子中,被乘数头为2,乘数头8,使用2x8
步骤三:
在按照口诀“(头x头)+尾”,将上个步骤的计算结果与两数的尾数相加,在例子中,两数共同尾数为8,所以在加上8
步骤四:
继续按照口诀“尾x尾”,在式子中,被乘数与乘数共同的尾数为8,使用8x8
步骤五:
接下来,将步骤4和步骤5的计算结果依次写出来,得到结果
头尾互换两位数减两位数
适用于AB-BA(A和B分为代表十位和个位上的数字,且A不等于B)的算式
速算口诀:头剪尾,乘以九
步骤一:
1.算式为65-56,被减数为56,减数为65符合头尾互换的条件
步骤二:
2.根据口诀“头数-头数”,使用被减数的头数“6”减去减数的”5”
步骤三:
3.根据口诀“(头数-头数)x9”,我们使用第二步头数-头数的差和9相乘,得到结果
11的乘法:
两头一拉,中间相加”是11”的乘积速算的基本口诀。实际就死将被乘数的十位和个位数数字分别拉开,然后将它们相加,得到的和放在十位和个位之间,就构成了乘积
第一种情况:
个位数与十位数相加小于10:
步骤一:
1.两位数与11相乘(小于10),如图所示
步骤二:
2.首先将这个两位数(个位数与十位数相加小于10)写下来,然后将个位数与十位数中间空一位。
步骤三:
3.然后将个位数和十位数相加。
步骤四:
4.将个位数和十位数相加的和卸载之前的空一位上,所得到的数字就是结果
第二种情况:
个位数与十位数相加大于等于10:
步骤一:
1.两位数与11相乘(大于等于10)
步骤二:
2.还是将这两个数(个位数与十位数相加大于等于10)写下来,将个位数字与十位数字之前空一位
步骤三:
3.然后将个位数字和十位数字相加
步骤四:
4.将个位数数字和十位数字相加的和卸载之前的空格上
步骤五:
5.将所得的数字百位上加1,所得的数字就是要计算的结果
总结:
总之速算技巧能够简化计算过程,减少计算时间,从而提高计算速度,等多种好处,最重要的是有助于培养和发展逻辑思维,底层逻辑认知觉醒。