Dify中ollama模型配置

在Dify中点击头像进入设置,工作空间中选择模型供应商,添加更多模型中选择ollama

进入配置页面以后

选择模型的类型

模型名称要和ollama中的模型一致,URL的格式是:http://本机IP:11434

保存刷新即可

### Dify 和 Llama 中配置重排序(Rerank)功能 #### 1. 在 Dify配置 Rerank 功能 为了在 Dify 中实现重排序功能,可以按照以下方式操作: - **添加 Rerank 模型** 首先,在 Dify 的管理界面中选择 `GPUStack` 类型,并点击添加模型按钮。随后,选择支持重排序类型的模型进行添加[^1]。 - **填写必要参数** - 填写由 GPUStack 提供的重排序模型名称,例如 `bge-reranker-v2-m3`。 - 输入对应的访问地址,比如 `http://192.168.0.111`。 - 添加生成的 API Key。 - 设置模型所需的上下文长度为 8192 或其他适合值。 完成上述步骤后,保存配置并重启服务以使更改生效。 #### 2. 在 Llama (通过 Ollama 工具) 中启用 Rerank 功能 虽然原生 Llama 并未直接提供内置的重排序机制,但借助工具如 Ollama 可扩展其能力来模拟这一过程[^3]。 - **安装与初始化 Ollama** 如果尚未安装 Ollama,请参照官方文档执行如下命令: ```bash curl https://ollama.ai/install.sh | sh ``` - **加载预训练好的 reranking 模型** 利用 Ollama 支持多模型的特点,下载适用于重新排名任务的具体版本。例如运行下面指令获取最新推荐模型: ```bash ollama pull meta/llama2-rerank ``` - **调整推理选项** 修改请求时传递额外参数控制行为逻辑,具体可查阅对应框架指南说明。 综上所述,无论是基于 Dify 构建还是利用 Ollama 对接外部资源,均能有效达成增强检索质量的目标。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值