常见的排序:冒泡、选择、插入、快排 及其优化

文章详细描述了四种常见的排序算法:冒泡排序、选择排序、插入排序和快速排序的原理和优化方法。对于冒泡排序,提出了减少冒泡次数和比较次数的优化策略;选择排序和插入排序对比了它们的实现和优化方式;快速排序则介绍了单边循环和双边循环两种方案,并强调了基准点的选择对效率的影响。所有算法都考虑了如何减少交换和比较的次数以提高性能。
摘要由CSDN通过智能技术生成

冒泡排序

文字描述

  1. 依次比较数组中相邻两个元素大小,若array[j] > array[j + 1],则交换两个元素,两两比较一遍称为一轮冒泡,结果是让最大的元素排到最后。
  2. 重复以上操作,直到整个数组有序

优化方式

减少冒泡次数

比如,原本就是有序的数组,本可以冒泡一次,就可以确定它是有序的。

所以需要定义一个boolean变量swapped(是否交换),如果一个循环下来,所有的冒泡都不需要交换,那么就可以证明它是有序数组,所以直接break,具体代码如下:

public class BubbleSort {
    public static void main(String[] args) {
        // int[] array = {5,2,7,4,1,3,8,9};
        int[] array = {1,2,3,4,5};
        bubble(array);
    }

    private static void bubble(int[] array) {
        for (int j = 0; j < array.length - 1; j++) {
            // 定义一个循环下来是否交换
            boolean swapped = false;
            for (int i = 0; i < array.length - 1 - j; i++) {
                if (array[i] > array[i + 1]){
                    swap(array,i,i + 1);
                    swapped = true;
                }
            }
            System.out.println("第" + j + "轮冒泡的结果" + Arrays.toString(array));
            if (!swapped){
                break;
            }
        }
    }

    private static void swap(int[] array, int i, int i1) {
        int temp = array[i];
        array[i] = array[i1];
        array[i1] = temp;
    }
}

运行结果

第0轮冒泡的结果[1, 2, 3, 4, 5]

减少比较次数【最终实现】

例如{5,2,7,4,1,3,8,9}这个数组,第一轮冒泡结束后的结果是{2, 5, 4, 1, 3, 7, 8, 9},比较了7次,但是第二次冒泡就没必要比较6次,因为第一轮冒泡没有交换最后3个数,所以就应该记录最后一次交换时的下标i【也就是3的下标哦,而不是i + 1,也就不是7的下标】,再下一轮冒泡循环的时候,就只比较i次就行了~

注意:为什么说这是最终实现?

因为这个代码可以直接实现减少冒泡次数,等最后一次交换的索引为0,表示整个数组有序,就可以break退出循环。【就相当于上面的swapped变量优化”减少冒泡次数“】

文字描述如下:

优化方式:每轮冒泡时,最后一次交换索引可以作为下一轮冒泡的比较次数,如果这个值为零,表示整个数组有序,直接退出外层循环即可

代码如下:

public class BubbleSort {
    public static void main(String[] args) {
        // int[] array = {5,2,7,4,1,3,8,9};
        int[] array = {1,2,3,4,5};
        bubble(array);
    }

    private static void bubble(int[] array) {
        // 由于n第一次需要赋值为array.length - 1且每次循环都会被改变,所以应该定义在最外层
        int n = array.length - 1;
        while (true){
            // 需要一个中间变量记录下标
            int index = 0;
            for (int i = 0; i < n; i++) {
                if (array[i] > array[i + 1]){
                    swap(array,i,i + 1);
                    index = i;
                }
                System.out.println("第" + i + "次比较");
            }
            System.out.println("这一轮冒泡的结果是" + Arrays.toString(array));
            // 把最后一次交换的下标赋值
            n = index;
            if (n == 0){
                break;
            }
        }
    }

    private static void swap(int[] array, int i, int i1) {
        int temp = array[i];
        array[i] = array[i1];
        array[i1] = temp;
    }
}

运行结果

第0次比较
第1次比较
第2次比较
第3次比较
第4次比较
第5次比较
第6次比较
这一轮冒泡的结果是[2, 5, 4, 1, 3, 7, 8, 9]
第0次比较
第1次比较
第2次比较
第3次比较
这一轮冒泡的结果是[2, 4, 1, 3, 5, 7, 8, 9]
第0次比较
第1次比较
第2次比较
这一轮冒泡的结果是[2, 1, 3, 4, 5, 7, 8, 9]
第0次比较
第1次比较
这一轮冒泡的结果是[1, 2, 3, 4, 5, 7, 8, 9]

选择排序

文字描述

  1. 将数组分为两个子集,排序的和未排序的,每一 轮从未排序的子集中选出最小的元素,放入排序子集
  2. 重复以上步骤,直到整个数组有序

代码如下:

/**
 * 选择排序
 */
public class SelectSort {
    public static void main(String[] args) {
        int[] array = {5,2,7,4,1,3,8,9};
        select(array);
    }

    private static void select(int[] array) {
        for (int i = 0; i < array.length - 1; i++) {
            int min = array[i];
            int minIndex = i;
            for (int j = minIndex + 1; j < array.length; j++) {
                if (min > array[j]){
                    minIndex = j;
                    min = array[j];
                }
            }
            if (minIndex != i){
                swap(array,i,minIndex);
            }
            System.out.println("第" + i + "轮选择排序后的结果" + Arrays.toString(array));
        }
    }

    private static void swap(int[] array, int i, int minIndex) {
        int temp = array[i];
        array[i] = array[minIndex];
        array[minIndex] = temp;
    }
}

运行结果

第0轮选择排序后的结果[1, 2, 7, 4, 5, 3, 8, 9]
第1轮选择排序后的结果[1, 2, 7, 4, 5, 3, 8, 9]
第2轮选择排序后的结果[1, 2, 3, 4, 5, 7, 8, 9]
第3轮选择排序后的结果[1, 2, 3, 4, 5, 7, 8, 9]
第4轮选择排序后的结果[1, 2, 3, 4, 5, 7, 8, 9]
第5轮选择排序后的结果[1, 2, 3, 4, 5, 7, 8, 9]
第6轮选择排序后的结果[1, 2, 3, 4, 5, 7, 8, 9]

优化方式

为了减少交换次数,每一轮先找出最小的索引,在每一轮最后再交换元素。

与冒泡排序对比

  1. 二者平均时间复杂度都是O(n2)
  2. 选择排序一般要快于冒泡,因为其交换次数少
  3. 但如果集合有序度高,冒泡优于选择
  4. 冒泡属于稳定排序算法,而选择属于不稳定排序

所谓稳定,也就是假如一个数组中,有两个数字2,如果不稳定,那每次排序时,两个2的排序可能不一样~【以扑克牌为例】

插入排序

文字描述

  • 文字描述(以升序为例)
  1. 将数组分为两个区域,排序区域和未排序区域,每一轮
    从未排序区域中取出第一个元素,插入到排序区域(需保证顺序)
  2. 重复以上步骤,直到整个数组有序

优化方式

  1. 待插入元素进行比较时,遇到比自己小的元素,就代表找到了插入位置,无需进行后续比较
  2. 插入时可以直接移动元素,而不是交换元素

代码如下

/**
 * 插入排序
 */
public class InsertSort {
    public static void main(String[] args) {
        int[] array = {5,2,7,4,1,3,8,9};
        // int[] array = {1,2,3,4,5,6,7,8,9};
        insert(array);
    }

    private static void insert(int[] array) {
        for (int i = 1; i < array.length; i++) {
            // 临时保存待插入的值
            int temp = array[i];
            int j = i - 1;
            while (j >= 0){
                if (array[j] > temp){
                    array[j + 1] = array[j];
                }
                else {
                    break;
                }
                j--;
            }
            array[j + 1] = temp;
            System.out.println("第" + i + "轮插入排序的结果是" + Arrays.toString(array));
        }
    }
}

与选择排序对比

  1. 二者平均时间复杂度都是O(n2)
  2. 大部分情况下,插入都略优于选择
  3. 有序集合插入的时间复杂度为O(n)
  4. 插入属于稳定排序算法,而选择属于不稳定排序

快速排序

1、单边循环快排

文字描述

单边循环快排(lomuto洛穆托分区方案)

  1. 选择最右元素作为基准点元素
  2. j指针负责找到比基准点小的元素,一旦找到则与i进行交换
  3. i指针维护小于基准点元素的边界,也是每次交换的目标索引
  4. 最后基准点与i交换,i即为分区位置

代码如下

/**
 * 单边循环,基准点在右边
 */
public class QuickSort {
    public static void main(String[] args) {
        int[] array = {5,3,7,2,9,8,1,4};
        // 传入左边界和右边界
        quick(array,0,array.length - 1);
    }

    private static void quick(int[] array, int l, int h) {
        // 下面会采用递归,所以先判断左边界是否小于右边界。
        /**
       		为什么这里是大于等于?而不是大于呢?
       		因为左边界和右边界相等,说明这个区间只剩下这一个数,所以就没有必要再递归下去,而且递归下去的话,还会执行partition方法
       	**/
        if (l >= h){
            return;
        }
        
        int index = partition(array,l,h);
        quick(array,l,index - 1);
        quick(array,index + 1,h);
    }

    private static int partition(int[] array, int l, int h) {
        int i = l;
        for (int j = l; j < h; j++) {
            if (array[j] < array[h]){
                if (i != j){
                    swap(array,i,j);
                }
                i++;
            }
        }
        if (i != h){
            swap(array,i,h);
        }
        System.out.println(Arrays.toString(array) + " i = " + i);
        return i;
    }

    private static void swap(int[] array, int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }
}

2、双边循环快排

文字描述

双边循环快排(并不完全等价于hoare霍尔分区方案)

  1. 选择最左元素作为基准点元素
  2. j指针负责从右向左找比基准点小的元素,i指针负责从左向右找比基准点大的元素,一旦找到二者交换,直至i,j相交
  3. 最后基准点与i(此时i与j相等)交换,i即为分区位置
public class QuickSort2 {
    public static void main(String[] args) {
        int[] array = {5,3,7,2,9,8,1,4};
        // 传入左边界和右边界
        quick(array,0,array.length - 1);
    }

    private static void quick(int[] array, int l, int h) {
        // 下面会采用递归,所以先判断左边界是否小于右边界。
        /**
       		为什么这里是大于等于?而不是大于呢?
       		因为左边界和右边界相等,说明这个区间只剩下这一个数,所以就没有必要再递归下去,而且递归下去的话,还会执行partition方法
       	**/
        if (l >= h){
            return;
        }
        
        int index = partition(array,l,h);
        quick(array,l,index - 1);
        quick(array,index + 1,h);
    }

    private static int partition(int[] array, int l, int h) {
        int i = l,j = h;
        while(i < j){
            while(i < j && array[j] > array[l]){
                j--;
            }
            while(i < j && array[i] <= array[l]){
                i++;
            }
            swap(array,i,j);
        }
        swap(array,l,j);
        System.out.println(Arrays.toString(array) + " j = " + j);
        return j;
    }

    private static void swap(int[] array, int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }
}

运行结果

[1, 3, 4, 2, 5, 8, 9, 7] j = 4
[1, 3, 4, 2, 5, 8, 9, 7] j = 0
[1, 2, 3, 4, 5, 8, 9, 7] j = 2
[1, 2, 3, 4, 5, 7, 8, 9] j = 6

注意事项

双边循环几个要点

  1. 基准点在左边,并且要先j后i
  2. while( i < j && ali] > pv ) j–
  3. while ( i < j && a[i] <= pv ) i++

单边循环快排的基准点在右边,双边循环快排的基准点在左边。先j后i,因为如果先i后j的话,每次 i 与 j 相等时会同时指向比基准点大的数,每次外层循环的最后一次swap会把比基准点大的数交换到前面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值