常见的排序
冒泡排序
文字描述
- 依次比较数组中相邻两个元素大小,若array[j] > array[j + 1],则交换两个元素,两两比较一遍称为一轮冒泡,结果是让最大的元素排到最后。
- 重复以上操作,直到整个数组有序
优化方式
减少冒泡次数
比如,原本就是有序的数组,本可以冒泡一次,就可以确定它是有序的。
所以需要定义一个boolean变量swapped(是否交换),如果一个循环下来,所有的冒泡都不需要交换,那么就可以证明它是有序数组,所以直接break,具体代码如下:
public class BubbleSort {
public static void main(String[] args) {
// int[] array = {5,2,7,4,1,3,8,9};
int[] array = {1,2,3,4,5};
bubble(array);
}
private static void bubble(int[] array) {
for (int j = 0; j < array.length - 1; j++) {
// 定义一个循环下来是否交换
boolean swapped = false;
for (int i = 0; i < array.length - 1 - j; i++) {
if (array[i] > array[i + 1]){
swap(array,i,i + 1);
swapped = true;
}
}
System.out.println("第" + j + "轮冒泡的结果" + Arrays.toString(array));
if (!swapped){
break;
}
}
}
private static void swap(int[] array, int i, int i1) {
int temp = array[i];
array[i] = array[i1];
array[i1] = temp;
}
}
运行结果
第0轮冒泡的结果[1, 2, 3, 4, 5]
减少比较次数【最终实现】
例如{5,2,7,4,1,3,8,9}这个数组,第一轮冒泡结束后的结果是{2, 5, 4, 1, 3, 7, 8, 9},比较了7次,但是第二次冒泡就没必要比较6次,因为第一轮冒泡没有交换最后3个数,所以就应该记录最后一次交换时的下标i【也就是3的下标哦,而不是i + 1,也就不是7的下标】,再下一轮冒泡循环的时候,就只比较i次就行了~
注意:为什么说这是最终实现?
因为这个代码可以直接实现减少冒泡次数,等最后一次交换的索引为0,表示整个数组有序,就可以break退出循环。【就相当于上面的swapped变量优化”减少冒泡次数“】
文字描述如下:
优化方式:每轮冒泡时,最后一次交换索引可以作为下一轮冒泡的比较次数,如果这个值为零,表示整个数组有序,直接退出外层循环即可
代码如下:
public class BubbleSort {
public static void main(String[] args) {
// int[] array = {5,2,7,4,1,3,8,9};
int[] array = {1,2,3,4,5};
bubble(array);
}
private static void bubble(int[] array) {
// 由于n第一次需要赋值为array.length - 1且每次循环都会被改变,所以应该定义在最外层
int n = array.length - 1;
while (true){
// 需要一个中间变量记录下标
int index = 0;
for (int i = 0; i < n; i++) {
if (array[i] > array[i + 1]){
swap(array,i,i + 1);
index = i;
}
System.out.println("第" + i + "次比较");
}
System.out.println("这一轮冒泡的结果是" + Arrays.toString(array));
// 把最后一次交换的下标赋值
n = index;
if (n == 0){
break;
}
}
}
private static void swap(int[] array, int i, int i1) {
int temp = array[i];
array[i] = array[i1];
array[i1] = temp;
}
}
运行结果
第0次比较
第1次比较
第2次比较
第3次比较
第4次比较
第5次比较
第6次比较
这一轮冒泡的结果是[2, 5, 4, 1, 3, 7, 8, 9]
第0次比较
第1次比较
第2次比较
第3次比较
这一轮冒泡的结果是[2, 4, 1, 3, 5, 7, 8, 9]
第0次比较
第1次比较
第2次比较
这一轮冒泡的结果是[2, 1, 3, 4, 5, 7, 8, 9]
第0次比较
第1次比较
这一轮冒泡的结果是[1, 2, 3, 4, 5, 7, 8, 9]
选择排序
文字描述
- 将数组分为两个子集,排序的和未排序的,每一 轮从未排序的子集中选出最小的元素,放入排序子集
- 重复以上步骤,直到整个数组有序
代码如下:
/**
* 选择排序
*/
public class SelectSort {
public static void main(String[] args) {
int[] array = {5,2,7,4,1,3,8,9};
select(array);
}
private static void select(int[] array) {
for (int i = 0; i < array.length - 1; i++) {
int min = array[i];
int minIndex = i;
for (int j = minIndex + 1; j < array.length; j++) {
if (min > array[j]){
minIndex = j;
min = array[j];
}
}
if (minIndex != i){
swap(array,i,minIndex);
}
System.out.println("第" + i + "轮选择排序后的结果" + Arrays.toString(array));
}
}
private static void swap(int[] array, int i, int minIndex) {
int temp = array[i];
array[i] = array[minIndex];
array[minIndex] = temp;
}
}
运行结果
第0轮选择排序后的结果[1, 2, 7, 4, 5, 3, 8, 9]
第1轮选择排序后的结果[1, 2, 7, 4, 5, 3, 8, 9]
第2轮选择排序后的结果[1, 2, 3, 4, 5, 7, 8, 9]
第3轮选择排序后的结果[1, 2, 3, 4, 5, 7, 8, 9]
第4轮选择排序后的结果[1, 2, 3, 4, 5, 7, 8, 9]
第5轮选择排序后的结果[1, 2, 3, 4, 5, 7, 8, 9]
第6轮选择排序后的结果[1, 2, 3, 4, 5, 7, 8, 9]
优化方式
为了减少交换次数,每一轮先找出最小的索引,在每一轮最后再交换元素。
与冒泡排序对比
- 二者平均时间复杂度都是O(n2)
- 选择排序一般要快于冒泡,因为其交换次数少
- 但如果集合有序度高,冒泡优于选择
- 冒泡属于稳定排序算法,而选择属于不稳定排序
所谓稳定,也就是假如一个数组中,有两个数字2,如果不稳定,那每次排序时,两个2的排序可能不一样~【以扑克牌为例】
插入排序
文字描述
- 文字描述(以升序为例)
- 将数组分为两个区域,排序区域和未排序区域,每一轮
从未排序区域中取出第一个元素,插入到排序区域(需保证顺序) - 重复以上步骤,直到整个数组有序
优化方式
- 待插入元素进行比较时,遇到比自己小的元素,就代表找到了插入位置,无需进行后续比较
- 插入时可以直接移动元素,而不是交换元素
代码如下
/**
* 插入排序
*/
public class InsertSort {
public static void main(String[] args) {
int[] array = {5,2,7,4,1,3,8,9};
// int[] array = {1,2,3,4,5,6,7,8,9};
insert(array);
}
private static void insert(int[] array) {
for (int i = 1; i < array.length; i++) {
// 临时保存待插入的值
int temp = array[i];
int j = i - 1;
while (j >= 0){
if (array[j] > temp){
array[j + 1] = array[j];
}
else {
break;
}
j--;
}
array[j + 1] = temp;
System.out.println("第" + i + "轮插入排序的结果是" + Arrays.toString(array));
}
}
}
与选择排序对比
- 二者平均时间复杂度都是O(n2)
- 大部分情况下,插入都略优于选择
- 有序集合插入的时间复杂度为O(n)
- 插入属于稳定排序算法,而选择属于不稳定排序
快速排序
1、单边循环快排
文字描述
单边循环快排(lomuto洛穆托分区方案)
- 选择最右元素作为基准点元素
- j指针负责找到比基准点小的元素,一旦找到则与i进行交换
- i指针维护小于基准点元素的边界,也是每次交换的目标索引
- 最后基准点与i交换,i即为分区位置
代码如下
/**
* 单边循环,基准点在右边
*/
public class QuickSort {
public static void main(String[] args) {
int[] array = {5,3,7,2,9,8,1,4};
// 传入左边界和右边界
quick(array,0,array.length - 1);
}
private static void quick(int[] array, int l, int h) {
// 下面会采用递归,所以先判断左边界是否小于右边界。
/**
为什么这里是大于等于?而不是大于呢?
因为左边界和右边界相等,说明这个区间只剩下这一个数,所以就没有必要再递归下去,而且递归下去的话,还会执行partition方法
**/
if (l >= h){
return;
}
int index = partition(array,l,h);
quick(array,l,index - 1);
quick(array,index + 1,h);
}
private static int partition(int[] array, int l, int h) {
int i = l;
for (int j = l; j < h; j++) {
if (array[j] < array[h]){
if (i != j){
swap(array,i,j);
}
i++;
}
}
if (i != h){
swap(array,i,h);
}
System.out.println(Arrays.toString(array) + " i = " + i);
return i;
}
private static void swap(int[] array, int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
2、双边循环快排
文字描述
双边循环快排(并不完全等价于hoare霍尔分区方案)
- 选择最左元素作为基准点元素
- j指针负责从右向左找比基准点小的元素,i指针负责从左向右找比基准点大的元素,一旦找到二者交换,直至i,j相交
- 最后基准点与i(此时i与j相等)交换,i即为分区位置
public class QuickSort2 {
public static void main(String[] args) {
int[] array = {5,3,7,2,9,8,1,4};
// 传入左边界和右边界
quick(array,0,array.length - 1);
}
private static void quick(int[] array, int l, int h) {
// 下面会采用递归,所以先判断左边界是否小于右边界。
/**
为什么这里是大于等于?而不是大于呢?
因为左边界和右边界相等,说明这个区间只剩下这一个数,所以就没有必要再递归下去,而且递归下去的话,还会执行partition方法
**/
if (l >= h){
return;
}
int index = partition(array,l,h);
quick(array,l,index - 1);
quick(array,index + 1,h);
}
private static int partition(int[] array, int l, int h) {
int i = l,j = h;
while(i < j){
while(i < j && array[j] > array[l]){
j--;
}
while(i < j && array[i] <= array[l]){
i++;
}
swap(array,i,j);
}
swap(array,l,j);
System.out.println(Arrays.toString(array) + " j = " + j);
return j;
}
private static void swap(int[] array, int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
运行结果
[1, 3, 4, 2, 5, 8, 9, 7] j = 4
[1, 3, 4, 2, 5, 8, 9, 7] j = 0
[1, 2, 3, 4, 5, 8, 9, 7] j = 2
[1, 2, 3, 4, 5, 7, 8, 9] j = 6
注意事项
双边循环几个要点
- 基准点在左边,并且要先j后i
- while( i < j && ali] > pv ) j–
- while ( i < j && a[i] <= pv ) i++
单边循环快排的基准点在右边,双边循环快排的基准点在左边。先j后i,因为如果先i后j的话,每次 i 与 j 相等时会同时指向比基准点大的数,每次外层循环的最后一次swap会把比基准点大的数交换到前面。