目录
1.题目
2.DFS
3.BFS
4.结语
题目
想看原题可以戳这里
迷宫寻路
题目描述
机器猫被困在一个矩形迷宫里。
迷宫可以视为一个 n × m n\times m n×m 矩阵,每个位置要么是空地,要么是墙。机器猫只能从一个空地走到其上、下、左、右的空地。
机器猫初始时位于 ( 1 , 1 ) (1, 1) (1,1) 的位置,问能否走到 ( n , m ) (n, m) (n,m) 位置。
输入格式
第一行,两个正整数 n , m n,m n,m。
接下来
n
n
n 行,输入这个迷宫。每行输入一个长为
m
m
m 的字符串,#
表示墙,.
表示空地。
输出格式
仅一行,一个字符串。如果机器猫能走到
(
n
,
m
)
(n, m)
(n,m),则输出 Yes
;否则输出 No
。
样例 #1
样例输入 #1
3 5
.##.#
.#...
...#.
样例输出 #1
Yes
提示
样例解释
路线如下: ( 1 , 1 ) → ( 2 , 1 ) → ( 3 , 1 ) → ( 3 , 2 ) → ( 3 , 3 ) → ( 2 , 3 ) → ( 2 , 4 ) → ( 2 , 5 ) → ( 3 , 5 ) (1,1)\to (2,1) \to (3,1) \to (3,2)\to (3,3) \to (2, 3) \to (2, 4) \to (2, 5) \to (3, 5) (1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(2,3)→(2,4)→(2,5)→(3,5)
数据规模与约定
对于 100 % 100\% 100% 的数据,保证 1 ≤ n , m ≤ 100 1 \leq n, m \leq 100 1≤n,m≤100,且 ( 1 , 1 ) (1,1) (1,1) 和 ( n , m ) (n, m) (n,m) 均为空地。
看到地图,看到能否走到,当然想到了搜索!
(不清楚搜素为何物的同学请自行百度)
这道题肥肠水可以用两种搜索
DFS
准备工作
- 我们需要数组存储整个地图:
char arr[505][505];
- 输入数据
- 标记数组(防止走回头路):
int vis[505][505];
正式开始
- 标记当前点走过
- 判定终点
- 循环可能可以走到的4个点
- 生成新点的坐标
- 判定可行性
- 若可行,搜索这个新点
- 最后输出
yes
,no
别抄上面有坑
完整代码
#include<bits/stdc++.h>
using namespace std;
char arr[505][505];
int vis[505][505];
int dx[]={1,0,-1,0};
int dy[]={0,1,0,-1};
int n,m;
bool f=1;
inline int read(){
int num=0;
char c=getchar();
bool f=1;
while(c<'0'||c>'9'){
if(c=='-'){
f=0;
}
c=getchar();
}
while(c>='0'&&c<='9'){
num=num*10+c-'0';
c=getchar();
}
return (f)?(num):(-num);
}
inline void write(int x){
if(x<0){
putchar('-');
}
if(x>=10){
write(x/10);
}
putchar(x%10+'0');
}
void dfs(int x,int y){
vis[x][y]=1;// 1. 标记当前点走过
if(arr[x][y]=='g'){// 2. 判定终点
f=0;
cout<<"Yes";// 7. 最后输出yes, no
return;
}
for(int i=0;i<4;i++){//3. 循环可能可以走到的4个点
int tx=x+dx[i];// 4. 生成新点的坐标
int ty=y+dy[i];
if(tx>=1&&tx<=n&&ty>=1&&ty<=m&&vis[tx][ty]==0&&arr[tx][ty]!='#'){// 5. 判定可行性
dfs(tx,ty);// 6. 若可行,搜索这个新点
}
}
}
int main(){
int x0=0,y0=0;
n=read(),m=read();
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>arr[i][j];
}
}
arr[n][m]='g';
dfs(1,1);
if(f){
cout<<"No";// 7. 最后输出yes, no
}
return 0;
}
BFS
准备工作
- 我们需要数组存储整个地图:
char arr[505][505];
- 输入数据
- 标记数组(防止走回头路):
int vis[505][505];
- 准备结构体表示每个点
- 准备好队列,按先进先出顺序遍历
正式开始
- 将起点入队,并标记走过
- 开始遍历队列中存储的点,也就是可到达的点
- 建立临时变量,存储队首元素,队首出队
- 建立方向数组,遍历这个点可能可以到达的点
- 建立临时变量,存储遍历到的可到达的点
- 判定是否可行
- 若可行终点判定
- 若可行且不是终点,将新点入队,并标记走过了
- 所有可达的点都遍历完成,如果没有到过终点,输出
no
完整代码
#include<bits/stdc++.h>
using namespace std;
char arr[105][105];
int vis[105][105];
inline int read(){
int num=0;
char c=getchar();
bool f=1;
while(c<'0'||c>'9'){
if(c=='-'){
f=0;
}
c=getchar();
}
while(c>='0'&&c<='9'){
num=num*10+c-'0';
c=getchar();
}
return (f)?(num):(-num);
}
inline void write(int x){
if(x<0){
putchar('-');
x*=-1;
}
if(x>=10){
write(x/10);
}
putchar(x%10+'0');
}
struct node{
int x,y;
node(int _x,int _y){
x=_x;
y=_y;
}
};
int n,m;
queue<node> que;
bool bfs(int x0,int y0){
// 1. 将起点入队,并标记走过
que.push(node(x0,y0));
vis[x0][y0]=1;
//2. 开始遍历队列中存储的点,也就是可到达的点
while(!que.empty()){
node a=que.front();// 3. 建立临时变量,存储队首元素,队首出队
que.pop();
// 4. 建立方向数组,遍历这个点可能可以到达的点
int dx[4]={-1,1,0,0};
int dy[4]={0,0,-1,1};
for(int i=0;i<4;i++){
node b(a.x+dx[i],a.y+dy[i]);//5. 建立临时变量,存储遍历到的可到达的点
if(b.x>=1&&b.x<=n&&b.y>=1&&b.y<=m&&vis[b.x][b.y]!=1&&arr[b.x][b.y]!='#'){// 6. 判定是否可行
// 7. 若可行终点判定
if(b.x==n&&b.y==m){
return 1;
}
// 8. 若可行且不是终点,将新点入队,并标记走过了
vis[b.x][b.y]=1;
que.push(b);
}
}
}
return 0;//9. 所有可达的点都遍历完成,如果没有到过终点,输出no
}
int main(){
n=read(),m=read();
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>arr[i][j];
}
}
if(bfs(1,1)){
cout<<"Yes";
}
else{
cout<<"No";
}
return 0;
}
结语
我的第一篇题解,也是我自己梳理一下思路,写得不好,请多多指教