【CVPR2024】Generative Image Dynamics

生成图像动态:从单张图片到逼真动画 🎥

在这里插入图片描述

最近,Google Research 的研究人员提出了一种新的方法,能够从单张静态图片生成逼真的动画效果。这篇发表在 CVPR 2024 的论文《Generative Image Dynamics》展示了如何通过建模图像空间中的运动先验,生成自然场景的动态效果,比如树木摇曳、花朵摆动、蜡烛闪烁等。本文将带你快速了解这篇论文的核心内容,并探讨其潜在的应用场景。


1. 引言 🌟

自然界中的场景总是充满微妙的运动,比如风吹树叶、水流波动等。虽然人类可以轻松地想象这些运动,但要让计算机模型学会生成逼真的动态效果却非常具有挑战性。传统的视频生成方法往往依赖于大量的视频数据,并且生成的视频可能会出现运动不连贯、纹理变化不自然等问题。

这篇论文提出了一种新的方法,通过从真实视频序列中提取运动轨迹,学习图像空间中的运动先验。具体来说,作者使用**频谱体积(Spectral Volume)来表示像素的长期运动轨迹,并通过扩散模型(Diffusion Model)**来预测这些运动。最终,生成的频谱体积可以转换为运动纹理,用于生成无缝循环的视频或交互式动态图像。


2. 方法概述 🛠️

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shanks66

你的鼓励是我创作的最大动力!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值