- 博客(7)
- 收藏
- 关注
原创 第七次课《OpenCompass 大模型评测实战》学习笔记
上海人工智能实验室科学家团队正式发布了大模型开源开放评测体系 “司南” (OpenCompass2.0),用于为大语言模型、多模态模型等提供一站式评测服务。
2024-05-04 17:24:51 1043 1
原创 第六节课《Lagent & AgentLego 智能体应用搭建》学习笔记
一个智能体应满足以下三个条件:可以感知环境中的动态条件,能采取动作影响环境,能运用推理能力理解信息、解决问题、产生推断、决定动作。端口映射在输入模型地址并选择好工具后,就可以开始体验了。这里因为我喜欢南京,所以我们就以南京的天气查询为例啦!可以看到成功查询了南京的天气!本节课的记录以及实现的回顾均告一段落。
2024-05-04 14:11:30 929 1
原创 第五节课《XTuner 微调 LLM:1.8B、多模态和 Agent》学习笔记
Q:首先我们要清楚为什么要进行微调?A:目前很多大语言模型其实都是底座模型(foundation model),为普遍的(一般性的)任务而进行预训练,将这类模型应用到特定领域,其表现不如领域内训练的模型,因此要进行领域内微调。
2024-04-21 15:35:59 1060 1
原创 第四节课《LMDeploy量化部署LLM&VLM实战》学习笔记
LMDeploy是涵盖LLM任务的全套轻量化、部署和服务解决方案。核心功能包括高效推理、可靠量化、便捷服务和状态推理。
2024-04-16 19:54:08 760
原创 第三节课《茴香豆:搭建你的 RAG 智能助理》学习笔记
RAG技术的出现可以很好地解决这个问题,如下右图所示,在没有额外训练地情况下,针对同样的问题“茴香豆是什么”,我们的茴香豆知识助手就回答出了这个问题,而这个问题是原始模型7B不能回答的,这个过程没有任何的训练过程。在面向大规模数据以及需要高速响应的需求的时候,向量数据库也是需要进行优化的,其中很重要的就是对向量表示的优化,例如使用更高级的文本编码技术、使用更好的预训练模型等,也包括去尝试不同的句子嵌入或段落嵌入方法等等,可以说针对向量表示的优化,将直接影响RAG的结果的好坏。
2024-04-14 19:52:03 1148
原创 第二节课《轻松玩转书生·浦语大模型趣味Demo》学习笔记
首先运行conda命令激活环境,然后使用git命令来获得仓库内的demo文件,在tutorial里面将八戒download以及八戒chat都已经放置完成,可以直接访问然后运行,就能达到相同的效果。接下来进入开发机,在terminal中输入环境配置命令“studio-conda -o internlm-base -t demo”,命令成功执行后的结果如下。在程序下载完成之后,我们要输入运行命令,将命令复制进Terminal然后回车,在程序运行的同时,对端口环境要配置本地PowerShell。
2024-04-05 17:51:17 827 1
原创 第一节课《书生·浦语大模型全链路开源体系》学习笔记
报告中着重提到了数据质量的重要性,好的数据集决定了训练出来的模型的性能,对于数据分析专业的人深有体会,数据的预处理相当于地基,是一切高楼的奠基,因此处理数据的这一步尤为重要,关于数据的预训练数据的处理,报告中提到整个数据处理流水线首先对来自不同来源的数据进行标准化,以获得格式化数据。然后,使用启发式统计规则进行数据过滤,以获得干净的数据。并举了InternLM2的一些例子:AI助手给出三天规划,充满人文关怀的对话,富有想象力的创作(写流浪地球三的剧本),工具调用能力升级(路径规划、餐厅查询)。
2024-03-31 16:14:59 633 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人