第一节课《书生·浦语大模型全链路开源体系》学习笔记

本文介绍了大模型的发展趋势,尤其是书生·浦语的InternLM2,其从开源到性能提升的过程,以及在语言建模、综合任务和应用中的亮点。同时,强调了数据质量和模型检验在大模型应用中的关键作用。
摘要由CSDN通过智能技术生成

关于视频的观后笔记:

本视频对大模型进行总的概括性介绍。目前的趋势是专用模型往通用模型发展,一个模型可以实现多种专用模型的功能。

介绍了书生·浦语大模型从2023年6月的InternLM到2021年1月的InternLM2的开源历程以及InternLM2的体系(面向不同的使用需求,分为7B和20B两种规格,每种规格包含三个模型版本InternLM-Base、InternLM2、InternLM2-Chat)

并且,对一代和二代的性能进行对比,通过可视化结果可以了解到二代的性能更强。左侧的图看到loss分布的左移,代表这二代的语言建模能力更强。并且从右图可以明显看到随着语料的提升,下游任务性能也在提升。

接下来介绍InternLM2的主要亮点包括:超长上下文(模型在20万token上下文中,几乎完美实现“大海捞针”)、综合性能全面提升(在推理、数学、代码方面提升显著,在重点测评方面比肩chatGPT)、拥有精准的指令跟随与丰富的结构化创作、可以支持工具的多轮调用以及负责智能体搭建、拥有突出的数理能力实用的数据分析功能

并举了InternLM2的一些例子:AI助手给出三天规划,充满人文关怀的对话,富有想象力的创作(写流浪地球三的剧本),工具调用能力升级(路径规划、餐厅查询)。

InternLM2 也有强大的内生计算能力,模型也具有数据分析能力,会对数据进行分析(画折线图、调用算法对数据进行预测等)

如何顺利将大模型应用于智能客服、个人助手或各大行业?典型的一个流程如上所示,我们需要先对业务场景进行考量,考虑算力是否足够应对该业务场景的复杂程度,上线之前还需要对模型进行评测和部署,需要代码去开发。

书生·浦语全链条开源开放体系:数据、预训练、微调、部署、评测、应用

模型的构建离不开数据作为基础,开放高质量语料数据集可以在OpenDataLab上获取:https://opendatalab.org.cn

 

大模型的下游应用中,增量续训(如:以文章书籍代码等为训练数据,让基座模型学习到某个领域的一些新知识)和有监督微调(如:以高质量对话、问答数据等为训练数据,让模型学会理解各种指令进行对话,或者注入少量领域知识)是经常会用到的两种方式。

 

CompassKit:大模型评测全栈工具链

OpenCompass核心代码库提供数据污染检查、模型推理接口、长文本评测、中英文双语主观评测

关于报告的观后笔记:

在本报告中,介绍了InternLM2大型语言模型,该模型在主观和客观评估中都表现出出色的性能。InternLM2 已经接受了超过 2T 的高质量预训练语料库的训练,涵盖 1.8B、7B 和 20B 的模型大小,适用于多种场景。为了更好地支持长上下文,InternLM2 使用 GQA 来降低推理成本,并在多达 32k 的上下文上进行了额外训练。报告还详细介绍了如何训练 InternLM2,包括训练框架、预训练文本数据、预训练代码数据、预训练长文本数据和对齐数据。此外,为了解决 RLHF 过程中遇到的偏好冲突,报告提出了有条件的在线 RLHF 来协调各种偏好。这些信息可以提供有关如何准备预训练数据以及如何更有效地训练大型模型的见解。

报告中着重提到了数据质量的重要性,好的数据集决定了训练出来的模型的性能,对于数据分析专业的人深有体会,数据的预处理相当于地基,是一切高楼的奠基,因此处理数据的这一步尤为重要,关于数据的预训练数据的处理,报告中提到整个数据处理流水线首先对来自不同来源的数据进行标准化,以获得格式化数据。然后,使用启发式统计规则进行数据过滤,以获得干净的数据。接下来,使用局部敏感哈希(LSH)方法进行重复数据删除,得到处理后的数据。并且由于网络上的数据质量良莠不齐,因此还对数据进行了质量过滤。

关于模型检验方面,报告中对大模型的性能评估通过六个关键维度进行剖析:综合考试、语言和知识、推理和数学、多种编程语言编码、长上下文建模、工具使用。这也启示我们关于在成功建模后的最后检验也要全面,综合考虑各方面的测试结果后进行打分会更为客观。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值