浅析Gompertz模型

对基于logistic模型的一类Gompertz模型的研究:

1.问题引入:

以捕鱼业持续获取这一模型为例,有一个渔场其中的鱼量在天然环境下按一定规律增长,倘若捕捞量和增长量能够稳定地保持大体上相等,则这个捕捞量就可以保持下去,生态环境也能持续发展.我们需要建立数学模型,实现以下几个目标:基于鱼的增长率确定出单位时间内合适的、稳定的捕捞量区间;有关捕捞过度、环境限度问题的研究;在此基础上如何使渔民所获经济效益最大?

2.回顾logistic模型:

我们知道,一般意义上的自然增长为指数型增长,最简单的例子让我想到了核物理中呈指数级增长的链式反应以及传统意义上的“一生二,二生四,......”它们都有一个共性:在不考虑其它因素的前提下,其单位时间内的增加量与当前量存在正比关系,从数学建模角度看,便是如下的变量可分离且带初值的一阶常微分方程


\frac {\partial x} {\partial t }=\alpha x,x(0)=x_0
 

通解极易求得


x(t)=x_0e^{\alpha t}
 

那么问题来了,其它因素的影响作何处理呢?仔细分析,这些影响无非体现在两个方面:一个是单位时间内的自然增长率(正比关系中的比例系数α);一个是人为干涉对数量造成的变化.而传统的logistic模型利用最小二乘法在大量数据基础上进行直线拟合,将增长率表示为现有量的一个线性递减函数.倘若外界因素对单位时间内增长率的影响是非线性的呢?如果依旧使用线性关系会不会有所不妥?这就是下面要研究的以对数形式递减的Gompertz模型.

3.Gompertz模型:

(Ⅰ)模型建立:设α为单位时间内的自然增长率,X0为渔场初始的鱼量,N为资源和环境制约下渔场所能容纳的最大鱼量,现有鱼量x关于时间t的导数即为增长率.

有如下一阶常微分方程形式


\frac {\partial x} {\partial t }=\alpha xln\frac{N}{x} ,x(0)=x_0
 

显然,渔场对鱼的捕捞量应当随渔场鱼量的增加而增长(人为因素、经济因素);对模型进一步简化和假设:用常数E表示单位时间内的捕捞率,即假设单位时间内的捕捞量与渔场鱼量成正比,比例系数为E.

由捕捞量和增长量相等,易得最终的一阶常微分方程


\frac {\partial x} {\partial t }=F(x)=\alpha xln\frac{N}{x}-Ex
 

(Ⅱ)模型求解与分析:

A.产量模型

我们无需求解出x与t的具体变化关系,基于常微分方程中的稳定性理论,我们只需要找到渔场的稳定鱼量以及使其保持稳定的条件即可.


F(x)=\alpha xln\frac{N}{x}-Ex=0

得到两个平衡点

x_0=\frac{N}{e^\frac{E}{\alpha}},x_1=0

易算出


F'(x_0)=-\alpha<0,\lim_{x\to 0^+}F'(x)=+\infty>0
 

显然,运用稳定性理论可以得到:x0点稳定,x1点不稳定。对结果进行分析


0<x_0<N

说明只要环境不发生极恶劣的改变,值α能够保持恒正,渔场鱼量会自然而然地稳定在x0处;而倘若捕捞过度,显然此时渔场鱼量应趋向x1=0处,即一个不稳定点,显然也无法获得持续产量和经济收益了.

B.经济效益模型:

先对模型进行假设:考虑利益最大化,不妨所捕捞的鱼总量为Ex全部能卖出,并且每条鱼的单价均为m;成本来源于:每一次(单位时间内)一条渔船出海进行捕捞所产生的各类费用总和,假设为一个常数n;单位时间内出海进行捕捞的船的条数为n(n=1,2,3,......)、单位面积的渔网所能捕获的鱼量为一个关于面积与时间的函数f......显然,E=g(f,n,......),为了简化模型,将E视作常量代入表达式,最终得到:

收入


I=mEx
 

支出


O=nE
 

单位时间内的利润为


P=I-O=mEx-nE
 

在稳定条件x=x0下,代入P(x),并令


P=mN\frac{E}{e^\frac{E}{\alpha}}-nE=0
 

利用导数与极值,最值点Em为一个超越方程的解,由已知的m,N,α将其代入,利用matlab不难求解得到超越方程的数值解,此即使经济效益最大化的最优解E.

再进一步做数值分析,在最大经济效益原则下,E和x(t)均有所减少,稳定鱼量有所增加,这显然是符合自然规律和我们的预期的.

### Gompertz模型概述 Gompertz模型是一种常用的非线性增长曲线,在生物过程建模中广泛应用。该模型最初由Jiunn-Jyi Lay引入到产甲烷过程中,用于描述累积产气量的变化规律[^1]。 具体形式如下: \[ y(t) = A \exp(-\exp(\frac{b-e^{c}t}{A})) \] 其中: - \(y\) 表示时间\( t \)下的累计气体产量; - \(A\) 是最大可能的累积气体产量(即渐近上限); - \(b\) 控制生长速率; - \(c\) 影响达到最大增长率所需的时间; ### 数据准备与预处理 为了进行有效的参数估计,建议先对原始数据进行初步探索和清理工作。这通常包括但不限于去除异常值、填补缺失值以及标准化/归一化操作等。对于时间序列数据而言,还需要确认采样频率的一致性和连续性。 ### 参数估计方法 可以采用最小二乘法来求解最优参数组合。通过调整三个未知数(A, b, c),使得预测值与实际观测之间的平方误差之和最小化。此过程可以通过数值优化算法自动完成,如Levenberg-Marquardt算法或梯度下降法。 Python中的`scipy.optimize.curve_fit()`函数提供了便捷的方式来执行这一任务: ```python from scipy.optimize import curve_fit import numpy as np def gompertz_model(x, a, b, c): """定义gompertz方程""" return a * np.exp(-np.exp((b - c*x)/a)) # 假设data_x为时间点数组,data_y为对应的测量值列表 popt, pcov = curve_fit(gompertz_model, data_x, data_y) print('拟合得到的最佳参数:', popt) ``` 上述代码片段展示了如何利用给定的数据集(data_x 和 data_y) 来计算最佳匹配的Gompertz模型参数(a,b,c)。 ### 结果评估 获得拟合后的参数之后,应当绘制图形对比理论曲线同真实数据间的差异情况,并计算诸如R²这样的统计指标以量化拟合质量的好坏程度。如果发现某些区域存在较大偏差,则考虑重新审视初始假设条件或是尝试其他类型的数学表达式作为替代方案。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值