1.首先在github上下载GraphRAG源码:https://github.com/microsoft/graphrag
2.从readme中找到[Read the docs](https://microsoft.github.io/graphrag)<br/>,进入这个网址后, 点击Get Started
3.按照官方的步骤:①pip install graphrag ②mkdir -p ./ragtest/input
③curl https://www.gutenberg.org/cache/epub/24022/pg24022.txt > ./ragtest/input/book.txt
④python -m graphrag.index --init --root ./ragtest⑤python -m graphrag.index --root ./ragtest
4.修改/ragtest文件下的.env(换成自己的API密钥)
5.修改/ragtest文件下的setting.yaml,以下是我的一些配置
---------------------------------------------------------------------------------------------------------------------------------
还有一点注意事项,如果你已经在.env这里复制了密钥,则api_key: ${GRAPHRAG_API_KEY}这里需要这么写,因为有$这个符号,表明它是要找GRAPHRAG_API_KEY这个变量,
此时需要设置成api_key: ${GRAPHRAG_API_KEY}。
如果没有$这个符号,可以直接写密钥,此时为:api_key: {换成自己的API密钥})
我用的是GPT3.5的API_KEY,因为GPT4有点子昂贵
--------------------------------------------------------------------------------------------------------------------------------
encoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ${GRAPHRAG_API_KEY}# 注意,这里就是我说的注意事项
type: openai_chat # or azure_openai_chat
model: gpt-3.5-turbo-16k
model_supports_json: false # true # recommended if this is available for your model.
# max_tokens: 4000
# request_timeout: 180.0
api_base: http://10.211.10.238:31000/v1
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
tokens_per_minute: 10_000 # set a leaky bucket throttle
requests_per_minute: 20 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
# temperature: 0 # temperature for sampling
# top_p: 1 # top-p sampling
# n: 1 # Number of completions to generate
parallelization:
stagger: 0.3
# num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
## parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio
llm:
api_key: ${GRAPHRAG_API_KEY} # 注意,这里就是我说的注意事项
type: openai_embedding # or azure_openai_embedding
model: text-embedding-ada-002
api_base: http://10.211.10.238:31000/v1
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
tokens_per_minute: 10_000 # set a leaky bucket throttle
requests_per_minute: 20 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 1 #25 # the number of parallel inflight requests that may be made
# batch_size: 16 # the number of documents to send in a single request
# batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
# target: required # or optional
chunks:
size: 300
overlap: 100
group_by_columns: [id] # by default, we don't allow chunks to cross documents
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\\.txt$"
cache:
type: file # or blob
base_dir: "cache"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
storage:
type: file # or blob
base_dir: "output/${timestamp}/artifacts"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
reporting:
type: file # or console, blob
base_dir: "output/${timestamp}/reports"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
entity_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/entity_extraction.txt"
entity_types: [organization,person,geo,event]
max_gleanings: 0
summarize_descriptions:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/summarize_descriptions.txt"
max_length: 500
claim_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
# enabled: true
prompt: "prompts/claim_extraction.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 0
community_reports:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/community_report.txt"
max_length: 5000 # 2000
max_input_length: 15000 # 8000
cluster_graph:
max_cluster_size: 10
embed_graph:
enabled: false # if true, will generate node2vec embeddings for nodes
# num_walks: 10
# walk_length: 40
# window_size: 2
# iterations: 3
# random_seed: 597832
umap:
enabled: false # if true, will generate UMAP embeddings for nodes
snapshots:
graphml: false
raw_entities: false
top_level_nodes: false
local_search:
# text_unit_prop: 0.5
# community_prop: 0.1
# conversation_history_max_turns: 5
# top_k_mapped_entities: 10
# top_k_relationships: 10
# max_tokens: 12000
global_search:
# max_tokens: 12000
# data_max_tokens: 12000
# map_max_tokens: 1000
# reduce_max_tokens: 2000
# concurrency: 32