基础配置介绍:本次测试基于windows11系统,创建了一个graphrag的虚拟conda环境(conda的安装和使用请直接移步anaconda的官网,找到windows版安装,安装位置尽量不放在C盘)。
使用流程:
先启动anaconda的命令行。
创建虚拟环境,注意要指定python,我这里是3.11,建议和我一样。
conda create -n graphrag python=3.11
接下来就是进入环境
conda activate graphrag
然后是
pip install graphrag
等待安装完毕,我们就可以开始建文件夹了。首先找一个放文件的地方,为了方便,建议在D盘根目录创建一个graphragtest的文件夹,然后在里面创建一个test的文件夹,在test文件夹里面,创建一个input文件夹,里面存放我们的book.txt文件,已经上传到本文的附件了。185KB,不大。文件的位置,如下图所示。
接下来,我们回到anaconda的命令行,在我们已经激活的graphrag虚拟环境里进入到我们的下面这个位置
D:\graphragtest\test
记得保证你那边和我这个显示一样。
输入命令
python -m graphrag.index --init
然后去我们的test文件夹,是下面这样
打开.env文件,你可以用记事本打开(你可以用自己的VScode都可以,这里是保证所有人都有的配置)
把<API_KEY>全部替换掉,换成你的openai的apikey,大致如下图所示(图中APIKEY已经失效了的,不要拿去用,哈哈)
然后保存退出(一定要替换成自己的apikey,还有记得充钱),接着打开settings.yaml,最开始是这样的,还是用记事本打开。
把model: gpt-4-turbo-preview改成model: gpt-4o-mini,为什么要换呢?答案很简单,4o-mini它便宜啊!!修改之后就是这样的
保存之后,回到我们的anaconda命令行,输入
python -m graphrag.index
当然你也可以按一下键盘的↑,然后删除--init,一样的效果。
回车,起飞。
Verb entity-extract阶段花费了2分钟13秒,
Verb summarize_descriptions花费了10多秒,中间还有一些太快了,就不计算时间了。
Verb create_community_reports花费了1分钟57秒。
总共的时间就是5分钟左右。看到下面的就代表大功告成!
接下来,就是我们的提问环节,输入下面的命令(问题的意思是这篇故事的主题是什么?)
python -m graphrag.query --root ../test --method global "What are the top themes in this story?"
等待了10秒钟的样子,得到了回复如下:
也可以用local方式提问(就是把之前的global换成了local),输入下面的命令
python -m graphrag.query --root ../myTest --method local "What are the top themes in this story?"
得到的回复如下
完结撒花!!给大家看看我们这整个流程的花费情况吧。
注意3.5是朋友在微调用的,与本文无关,我们的花费是4o和embedding,也就是0.25美刀,即2元左右的价格,我们的book.txt大小为185KB。
已经看完本文了。写本文痛失2块大洋,希望各位觉得有用就点个赞和收藏吧!