前缀和__一维前缀和

本文介绍了如何通过预处理得到前缀和数组,利用状态转移方程高效计算任意连续区间内的和。前缀和方法简化了区间和的求解过程,适用于IT技术中的数据处理和算法优化问题。
摘要由CSDN通过智能技术生成

前缀和__一维前缀和



前言

前缀和------快速求出数组中某一个连续区间的和


一、第一步预处理出来一个前缀和数组

在这里插入图片描述

arr表示数组
index是数组下标,这里我们的数组下标从1开始计数
dp[i]表示[1,i] 区间内所有元素的和 (状态表示)
由上图可以推出:
dp[i] = dp[i-1] + arr[i](状态转移方程)

二、使用前缀和数组

在这里插入图片描述

例如给我左右端点 l r,要求求出[l,r]这一段连续区间的和
由上图所示l=3,r=5
想要求得[3,5]区间的和,可以用5的前缀和 - 2的前缀和(即一中的dp[ ])
可知[l,r] → dp[r] - dp[l-1]
即可求得[l,r]这一段连续区间的和


总结

一维前缀和

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值