二叉搜索树-AVL树 & 红黑树

二叉搜索树-AVL树 & 红黑树

AVL树 & 红黑树一种平衡二叉树



前言

map/multimap/set/multiset这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。


一、AVL树

1.AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。此时出现了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
    在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n)搜索时间复杂度O( l o g 2 n log_2 n log2n)

2.AVL树节点的定义

AVL树节点的定义:

代码如下(示例):

template<class T>
struct AVLTreeNode
{
	AVLTreeNode<T>* _left;		//该节点左孩子
	AVLTreeNode<T>* _right;		//该节点右孩子
	AVLTreeNode<T>* _parent;	//该节点双亲
	T _data;
	int _bf;
	AVLTreeNode(const T& data)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_data(data)
		,_bf(0)
	{}
};

3.AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

代码如下(示例):

//1. 先按照二叉搜索树的规则将节点插入到AVL树中
// .....
//2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树
// 的平衡性
/*
cur插入后,parent的平衡因子一定需要调整,在插入之前,parent的平衡因子分为三种情况:-1,0, 1,分以下两种情况:
 1. 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可
 2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
 1. 如果parent的平衡因子为0,说明插入之前parent的平衡因子为正负1,插入后被调整成0,此时满足
  AVL树的性质,插入成功
 2. 如果parent的平衡因子为正负1,说明插入前parent的平衡因子一定为0,插入后被更新成正负1,此
  时以parent为根的树的高度增加,需要继续向上更新
 3. 如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进行旋转处理
*/
	bool Insert(const T& data)
	{
		Node* cur = _root;
		Node* parent = nullptr;
		if (_root == nullptr)
		{
			_root = new Node(data);
			return true;
		}
		while (cur)
		{
			if (cur->_data < data)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_data > data)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		//cur走到空,找到了插入位置
		cur = new Node(data);
		if (parent->_data < data)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		//管控平衡::
		while (parent)
		{
			//更新双亲的平衡因子
			if (cur == parent->_left)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}
			// 更新后检测双亲的平衡因子
			if (parent->_bf == 0)
			{
				break;
			}
			//父亲的bf更新后为 1 或者 -1,表示父亲所在的子树高度不变,必须继续向上更新
			else if(parent->_bf == 1 || parent->_bf ==  = -1)
			{
				cur = parent;
				parent = parent->parent;
			}

			//平衡因子异常了,要调整,需要对以parent为根的树进行旋转处理
			else if(parent->_bf == 2 || parent->_bf == = -2)
			{
				if (parent->_bf == 2 && cur->_bf = 1)
				{
					RotateL(parent);
				}
				else if(parent->_bf == -2 && cur->_bf = -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf = -1)
				{
					RotateRL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf = 1)
				{
					RotateLR(parent);
				}
				else
				{
					assert(false);
				}
				break;
			}

		}
		return true;
	}

4.AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种

  1. 新节点插入较高左子树的左侧—左左:右单旋
    在这里插入图片描述

代码如下(示例):

/*
 上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了
 一层,导致以60为根的二叉树不平衡,也就是此时60的右左子树高度差变为-2,要让60平衡,只能将60
 左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其
 放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,
 旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
 1. 30节点的右孩子可能存在,也可能不存在
 2. 60可能是根节点,也可能是子树
  如果是根节点,旋转完成后,要更新根节点
  如果是子树,可能是某个节点的左子树,也可能是右子树
*/
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		subL->_right = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subL;
		if (subLR)
			subLR->_parent = parent;
		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
		parent->_bf = subL->_bf = 0;
	}
  1. 新节点插入较高左子树的左侧—左左:左单旋
    在这里插入图片描述
    左单旋的实现以及情况的考虑与右单旋类似;

代码如下(示例):

	void RotareRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		int bf = subRL->_bf;
		RotateR(parent->_right);
		RotateL(parent);
		if (bf == 0)
		{
			parent->_bf = subR->_bf = subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			subR->_bf = 1;
			parent->_bf = subRL->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = subRL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
  1. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋旋
    在这里插入图片描述
    双旋操作:将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

代码如下(示例):

	void RotareLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);
		if (bf == 0)
		{
			parent->_bf = subL->_bf = subLR->_bf = 0;
		}
		else if (bf == -1)
		{
			subL->_bf = subLR->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			parent->_bf = subLR->_bf = 0;
			subL->_bf = -1;
		}
		else
		{
			assert(false);
		}
	}
  1. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋
    在这里插入图片描述
    参考左右双旋,实现以及情况考虑类似
	void RotareRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		int bf = subRL->_bf;
		RotateR(parent->_right);
		RotateL(parent);
		if (bf == 0)
		{
			parent->_bf = subR->_bf = subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			subR->_bf = 1;
			parent->_bf = subRL->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = subRL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

5.AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常需要修改,就不太适合了。

二、红黑树

1.RB树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
在这里插入图片描述

2.RB树的性质

1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

这里,为什么满足上面的性质,RB树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?
首先为了满足性质4,假设一颗RB树,每条路径上均包含3个黑色节点,那么在这个树中
最长路径 为 黑→红→黑→红→黑→红
最短路径 为黑→黑→黑

3.RB树节点的定义

代码如下(示例):

//采用枚举定义节点的颜色
enum color
{
	RED,
	BLACK
};
// 红黑树节点的定义
template<class T>
struct RBTreeNode
{
	RBTreeNode* _pLeft;
	RBTreeNode* _pRight;
	RBTreeNode* _pparent;
	T _data;
	color _col;
	RBTreeNode(const T& data)
		: _pLeft(nullptr) //左孩子
		, _pRight(nullptr)//右孩子
		,_pparent(nullptr)//双亲
		,_data(data)
		,_col(RED) //将节点的默认颜色设置为红色
	{}

};

4.RB树节点的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  1. 按照二叉搜索的树规则插入新节点

代码如下(示例):


template<class T>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	bool Insert(const T& data)
	{
		if (_pHead == nullptr)
		{
			_pHead = new Node(data);
			_pHead->_col = BLACK;
			return true;
		}
		Node* cur = _pHead;
		Node* parent = nullptr;
		
		while (cur)
		{
			if (cur->_data < data)
			{
				parent = cur;
				cur = cur->_pRight;
			}
			else if (cur->_data > data)
			{
				parent = cur;
				cur = cur->_pLeft;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(data);
		cur->_col = RED;
		if (parent->_data < data)
		{
			parent->_pRight = cur;
			cur->_pparent = parent;
		}
		else
		{
			parent->_pLeft = cur;
			cur->_pparent = parent;
		}
		//检测颜色
		//...
		//...
		//根节点的颜色可能被修改,将其改回黑色
		_root ->col = BLACK;
private:
	Node* _root = nullptr;
};
  1. 检测新节点插入后,红黑树的性质是否造到破坏

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

  • 情况一: cur为红,p为红,g为黑,u存在且为红

在这里插入图片描述
在这里插入图片描述

解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。
同时还要考虑p是g的左孩子还是右孩子问题。

  • 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑
    在这里插入图片描述
    其中:u的情况有两种
    1.如果u节点不存在,则cur一定是新插入节点,因为如果cur不是新插入节点,则cur和p一定有一个节点的颜色是黑色,就不满足性质4:每条路径黑色节点个数相同。
    2.如果u节点存在,则其一定是黑色的,那么cur节点原来的颜色一定是黑色的,现在看到其是红色的原因是因为cur的子树在调整的过程中将cur节点的颜色由黑色改成红色。

p为g的左孩子,cur为p的左孩子,则进行右单旋转;
相反,p为g的右孩子,ur为p的右孩子,则进行左单旋转,p为g的右孩子,cur为p的右孩子,则进行左单旋转

  • 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑
    情况三其实就是在g、p、cur的关系图中出现了"折线"(要进行双旋,即先旋转一次变成情况二,在根据情况二向下进行)
    在这里插入图片描述p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;
    相反,p为g的右孩子,cur为p的左孩子,则针对p做右单旋转则转换成了情况2

代码如下(示例):

		//检测颜色

		Node* grandparent = nullptr;
		while (parent && parent->_col == RED)
		{
			grandparent = parent->_pparent;

			//如果p是g的左孩子
			if (parent == grandparent->_pLeft)
			{
								//     g
								//   p   u
								// c
				Node* uncle = grandparent->_pRight;
				//uncle 存在并且 为红色,只需要变色就可以
				if (uncle && uncle->_col == RED)
				{
					//c是p的左孩子还是右孩子都一样	->  变色就可以
					parent->_col = uncle->_col = BLACK;
					grandparent->_col = RED;
					cur = grandparent;
					parent = cur->_pparent;
				}
				//uncle不存在或者为黑色 ->需要旋转+变色
				else 
				{
					//此时就要区别c是p 的左孩子还是右孩子了
					//c是p的左孩子
					if (cur == parent->_pLeft)
					{
						RotateR(grandparent);
						parent->_col = BLACK;
						grandparent->_col = RED;
					}
					//c是p 的右孩子 //双旋+变色
								//     g
								//   p   u
								//     c
					else
					{
						RotateL(parent);
						RotateR(grandparent);
						grandparent->_col = RED;
						cur->_col = BLACK;

					}
					break;
				}
			}
			//如果p是 g 的右孩子
			else
			{
				Node* uncle = grandparent->_pLeft;
				//uncle 存在并且 为红色,只需要变色就可以
				if (uncle && uncle->_col == RED)
				{
					//c是p的左孩子还是右孩子都一样	->  变色就可以
					parent->_col = uncle->_col = BLACK;
					grandparent->_col = RED;
					cur = grandparent;
					parent = cur->_pparent;
				}
				//uncle不存在  或者 为黑色
				else
				{
					//     g黑
					//   u   p红
					//         c红
					// c是p 的右孩子
					if (cur = parent->_pRight)
					{
						RotateL(grandparent);
						grandparent->_col = RED;
						parent->_col = BLACK;
					}
					//c是p 的左孩子
					//     g黑
					//   u   p红
					//     c红
					else
					{
						RotateR(parent);
						RotateL(grandparent);
						cur->_col = BLACK;
						grandparent->_col = RED;
					}
					break;
				}
			}

		}

5.RB树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。


总结

以上简单介绍了红黑树和AVL的概念、结构以及插入操作,还有关于红黑树应用、以及红黑树的迭代器问题,知道最后用红黑树模拟实现以下库中的map、set,再更新吧…

  • 18
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值