word里面,在章节编号为第一章、第二章这种情况,实现图根据章节编号并且形式为图1.1、图2.1

本文记录了本人在学习题注的过程

会设置多级标题的可以直接跳到 图片题注的设置中

喜欢看视频的也可以看下面视频,欢迎大家留言。

视频链接:word里面,在章节编号为第一章、第二章这种情况,实现图根据章节编号并且形式为图1.1、图2.1_哔哩哔哩_bilibiliicon-default.png?t=N7T8https://www.bilibili.com/video/BV1AvYte8Efg/?spm_id_from=333.999.0.0&vd_source=c29fc66d21df9ebff41828274ee5a4a2

目录

一、设置多级标题

2、根据要求设置下面7处相应的参数

 级别1设置

 级别2设置

二、文章内容标题设置

三、 图片题注的设置

四、修改题注

五、构建基块


一、设置多级标题

1、在 “段落” 工具栏中选择我们的 “多级列表”

2、根据要求设置下面7处相应的参数

 级别1设置

如果你发现你的界面上只有左边这些东西 右边的没有显示出来  那你点击左下角的 更多 就会得到我这样的界面

1:你要设置的标题等级 1代表一级标题

2:如图上所示就是将 标题1 设置为我们的一级标题

3:选择我们标题编号样式 (根据自己的要求选择)

4:序号4中 带底纹的一 就是我们选择的序号(是由我们上一步设置自动生成的 而不是手打的 手打的无效这个得注意) 后面会自动排序的也是带底纹的  第和章是自己手打上去的 不会发生改变

5:设置起始序号

6:图片中的最下面圈起来的根据要求自己设置好

 级别2设置

1、2前面讲了就不赘述了

3:如果是空白的那就现在 “包含的级别编号来自” 选择上一级标题 再在“此级别的编号样式” 选择我们的样式    然后我们会发现 他这个编号格式不太对 我们想要的应该是1.1这样的格式而不是一.1这样的格式   为什么会这样呢  原因是因为我们在上一张图片中的4 选择的编号样式是 一、二、三这种样式   解决办法 右边红色方框圈起来的 “正规形式编号” 前面的方框勾选就可正常显示。

后面的级别根据前面的几步设置就行  那么多级标题设置完成

二、文章内容标题设置

 根据我们前面的多级列表的设置 对应我们上面的图

选中我们文章需要中需要设置为一级标题或者二级标题的段落  点击我们图片中的标题1 或者标题2就可以完成设置  设置好的效果如下图

三、 图片题注的设置

1、选中我们的图片  右击鼠标  在弹出的快捷菜单中选择  “插入题注”  如下图

2、点击我们的插入题注之后就会出现左图    我们可以在 标签 下拉列表中选择合适的标签  或者 新建标签

3、单击 编号 弹出右边窗口   勾选我们的 包含章节号 设置好我们 章节起始样式     设置完之后点确定   你会发现你选中的图片下方会出现 “测试图 一‑1”

但是这样的效果并不是我们想要的效果 我们想要测试图 1‑1这样效果的题注

四、修改题注

1、选中我们的图片题注  然后右击选择 切换域代码 或者按ALT+F9键  就可以看到下图2

 2、将我们的光标定位到测试图后面然后按键盘上的 CTRL+F9键会得到到一对花括号(注意这对花括号一定不能直接键盘上输入一对花括号不然没有用)

 3、右击花括号里面 选择 编辑域    在域名中选择 Quote  在 字面文字 文本框里面输入我们的 年份 比如:二零二四年八月八日  单击 日期格式 中的红色方框框起来的格式

 4、单击我们右下角的  域代码   将域代码全选复制 (红框中的内容) 复制完那个之后直接点右上角的 x 关闭掉对话框

5、然后在图一花括号中粘贴刚刚复制的域代码  得到图二

6、 在我们的 年份前面和后面输入英文的引号( “) 效果如下图

7、选择{STYLEREF 1 \s} 剪切  替换掉 日 前面的字  效果如下图2

8、将 M/d/yyy 修改为D  就修改完成啦修改结果如下   最后按 alt+f9  如果显示的是 测试图 -1 那就在按F9刷新域  这样就不管前面添加还是减少了大标题都可以和标题对应了。 但是这还是很麻烦 要是每一个都这样设置的话那就还不如手动了  解决办法 就是使用构建基块的方法

五、构建基块

选择我们创建好的 题注 然后按 alt+F3 键  修改好我们的名称   你在新行中输入此名称会自动给你插入题注   点击确定 就大功告成啦

当我们输入 基块名称的前几个字的时候就会出现上面的图  按照提示按 Enter键就可以直接插入啦这个方法开始的时候比较麻烦 但是他设置好后非常好用呀    这也是我这段时间使用后的真实体验

为了帮助您生成一篇名为“基于Python的图片识别模型”的Word文档,您可以参考以下模板: --- ### 基于Python的图片识别模型 #### 学生姓名:XXX #### 系别:XXX #### 专业班级:XXX #### 任课教师:XXX **摘要** 本报告详细介绍了基于Python的图片识别模型的设计与实现。报告内容涵盖了数据集采集、数据集介绍、网络模型设计及课程总结等方面。通过使用PyTorch框架,我们在CIFAR-10数据集上实现像分类任务,并探讨了模型的性能和改进方法。 ### 第一章 数据集介绍 #### 1.1 数据集采集 在数据集采集阶段,我们使用了CIFAR-10数据集作为训练和测试的数据源。CIFAR-10数据集是一个常用的像分类数据集,包含10个不同类别的像样本。在PyTorch库中,可以直接使用内置函数`torchvision.datasets.CIFAR10`来下载和加载CIFAR-10数据集。 ```python import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.utils.data import DataLoader transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=100, shuffle=True, num_workers=2) testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) ``` #### 1.2 数据集介绍 CIFAR-10是一个公开的彩色像数据集,包含10个类别的RGB彩色图片:飞机(airplane)、汽车(automobile)、鸟类(bird)、猫(cat)、鹿(deer)、狗(dog)、蛙类(frog)、马(horse)、船(ship)和卡车(truck)。每张图片的尺寸为32×32,训练集包含50000张图片,测试集包含10000张图片。 #### 1.3 数据集预处理 在使用数据集进行模型训练之前,我们对数据集进行了预处理。预处理过程包括像的裁剪、水平翻转、像素归一化等操作,旨在增加数据的多样性和模型的鲁棒性。 ```python transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) ``` ### 第二章 网络模型设计 #### 2.1 全连接神经网络原理 全连接神经网络(Fully Connected Neural Network,简称FCNN)是一种最基础的人工神经网络结构,也称为多层感知器(Multilayer Perceptron,MLP)。在全连接神经网络中,每个神经元都与前一层和后一层的所有神经元相连接,形成一个密集的连接结构。 #### 2.2 模型搭建 ##### 2.2.1 ResNet18网络结构 ResNet18模型是一种经典的深度卷积神经网络,其核心思想是通过引入残差块(Residual Block)来解决深层网络训练中的梯度消失和表达能力瓶颈的问题。残差块通过跳跃连接(Shortcut Connection)将输入与输出相加,使得网络能够更好地捕捉像中的细节和特征。 ##### 2.2.2 PyTorch框架搭建ResNet18模型 在本次项目中,我们使用了PyTorch框架对ResNet18模型进行了搭建。ResNet18模型的搭建过程可以分为两个主要部分:基本的残差块(BasicBlock)和整体的ResNet网络。 ```python import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet18(): return ResNet(BasicBlock, [2, 2, 2, 2]) ``` ### 第三章 模型训练与测试 #### 3.1 模型配置 在模型训练前,我们需要给模型进行训练配置,包括定义损失函数、选择优化器、设置学习率和迭代训练。 ```python import torch.optim as optim from torch.optim.lr_scheduler import CosineAnnealingLR model = ResNet18().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) scheduler = CosineAnnealingLR(optimizer, T_max=200) ``` #### 3.2 模型训练 模型的具体训练流程如下: ```python for epoch in range(num_epochs): model.train() running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() scheduler.step() print(f'Epoch {epoch+1}, Loss: {running_loss / len(trainloader)}') ``` #### 3.3 模型测试 模型训练完成后,我们使用测试集对模型进行测试。 ```python model.eval() correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%') ``` ### 第四章 课程总结 #### 4.1 通过课程学习对人工智能的了解与思考 通过本次课程的学习,我对人工智能的应用领域、发展趋势以及对社会的影响有了更深入的了解。我认识到人工智能在各个领域都具有巨大的潜力,但也面临着一些挑战和风险。我们对人工智能技术的应用和发展保持积极态度,并意识到在推动人工智能发展的同时,需要重视相关的伦理和法律问题,确保人工智能的良性发展。 #### 4.2 模型设计中的创新点 在本次模型设计中,我使用了ResNet18模型对CIFAR-10数据集进行分类。ResNet18模型通过引入残差块和跳跃连接的方式,在训练深层网络时克服了梯度消失的问题,提高了模型的性能。我的模型在CIFAR-10数据集上取得了较好的分类准确率,具有一定的创新性和实用性。 --- 希望这个模板对您有所帮助!如果您有任何进一步的需求或修改建议,请随时告诉我。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值