一、设有:x为准确值,x为近似值
1、绝对误差:e(x) = x-x
2、相对误差:er(x) = e(x)/|x*|
3、绝对误差限:|e(x) |= | x-x*| <= p(x)
4、已知相对误差,求近似值x几位有效数字
5、
(1)比如:1000/1.5---->改为1/(1.5/1000)
(2)
(3)
二、不动点迭代:
1、不动点x*的定义:
2、解题步骤:
(1)构造出x=…
(2)判断是否收敛:
1)判断 构造出的函数P(x)( 并且 x =P(x) )在定义域[a,b]内,P(x)值域也是在[a,b]内,
2)P(x)的一阶导数P’(x)在定义域[a,b]内的值域是小于等于L(0<L<1)
3)则收敛
例题:
3、收敛阶:
方法:已经求出不动点x*,所以可以求出一阶导P’(x)和P’(x*)的值=0,二阶导P’‘(x)和P’'(x*)的值=0…最后求得某阶导数以及在x=x处,值不等于0,就为收敛剂
例题:四阶收敛级(可以看出x=2)
三、牛顿迭代法
1、迭代公式Xn+1 = Xn - f(Xn)/f’(Xn)
2、解题步骤
(1)确定f(Xn)函数
(2)求出导数f’(Xn)
(3)写出迭代公式Xn+1
(4)迭代初值X0简单取(最好整数1,2…)
3、简单迭代法三种改进
重根适合后面两种,例题:
四、雅可比迭代法
1、
第一个式子:除了X1以外的全部移到等式右边,然后左右两边除以X1的系数
第二个式子:除了X2以外的全部移到等式右边,然后左右两边除以X2的系数
后面类似…
然后进行左右迭代:
左边都X的为k+1次,右边都为X的k次
然后对所有的变量取初值为0,可得后面不同次的迭代结果
五、高斯-赛德迭代(Guss-side)
1、第一步与雅可比迭代法一样,把X1、X2、X3、移到等号右边
2、第二步得到迭代形式如下:
把上一次迭代结果带入下一次需要迭代的参数里面
3、然后对所有的变量取初值为0,可得后面不同次的迭代结果
(第三步与雅可比迭代法一样)