视频自动摘要是一项跨多领域的任务,需要将长视频转换为简明的关键信息。整个流程通常包括视频预处理、语音转文本、文本分析、摘要生成以及时间戳对齐与结构化呈现等步骤。以下将详细说明通用流程,并针对不同视频类型(会议、讲座、新闻、影视综艺等)的特殊适配方案。
图:自动化视频摘要系统的示例架构。用户上传视频后,经过后端工作流处理:首先利用语音识别将视频语音转录为文本,接着通过预训练模型生成文本摘要,然后使用文本嵌入将摘要片段与原视频字幕对齐以确定相应的视频片段及时间码,最后还能选择语音合成旁白和视频编辑合成输出短视频 (Video summarization with AWS artificial intelligence (AI) and machine learning (ML) services | AWS for M&E Blog) (Video summarization with AWS artificial intelligence (AI) and machine learning (ML) services | AWS for M&E Blog)。该架构展示了一个端到端的视频摘要管道,各模块之间通过队列和工作流编排串联。
1. 视频预处理(格式转换与分割)
在开始摘要之前,首先需要对原始视频进行预处理,以方便后续处理:
- 格式转换:将视频转换为适合处理的格式。例如提取音频轨道用于语音识别(可通过FFmpeg实现) (FFMPEG: How to extract audio from video - JSON2Video)。通常将音频统一为如 WAV 格式(单声道、适当采样率)以提高识别准确率和处理速度。
- 视频分割:针对超长视频或需要按情节分段的内容,将视频拆分为更小的片段。可以按固定时长分割,或利用镜头/场景检测算法自动按内容变化切分。工具方面,FFmpeg 提供了按时间片段分割视频的功能 (Using ffmpeg to cut up video - command line - Super User);更高级的可以使用如 PySceneDetect 检测镜头切换,或通过图像识别检测幻灯片翻页等场景变化。
- 降噪与音频增强(可选优化):如果原始音频质量差(如会议录音嘈杂),可以在预处理中加入降噪算法以提升后续识别效果 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客)。例如使用 SoX、FFmpeg 的滤波器或深度学习降噪模型,对音频进行去噪和增益调整。
经过预处理,我们将得到标准化的音频片段和(可选的)视频分段,为后续的语音转文本和文本分析做好准备。
2. 语音转文本(STT,Speech-to-Text)
这一阶段将视频或音频中的讲话内容转录为可处理的文本,是整个流程的基础:
- 选择STT引擎:可以使用商用云服务(如 Google Cloud Speech、Amazon Transcribe、Microsoft Azure Speech)或开源模型(如 Kaldi、Mozilla DeepSpeech、Wenet/FunASR、OpenAI Whisper)。云服务通常开箱即用且支持多语言,并提供高准确率和噪声鲁棒性;例如 Amazon Transcribe 能将视频语音自动转为文本和字幕,并支持自定义领域词汇 (Video summarization with AWS artificial intelligence (AI) and machine learning (ML) services | AWS for M&E Blog)。开源模型则可以在本地运行,其中 Whisper 在多语言识别上效果出色 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客)。实践中可根据语言和准确率需求选择合适引擎。
- 时间戳获取:理想情况下,语音识别结果应包含时间戳,以便将转录文本与原视频时间轴对应。例如 Whisper 等模型可以输出带有时间戳的分段文本 (Speaker diarization using Whisper ASR and Pyannote | by Ritesh | Medium)。云服务的API也通常提供每个词或每句话的开始/结束时间 (Video summarization with AWS artificial intelligence (AI) and machine learning (ML) services | AWS for M&E Blog)。这些时间标记对后续摘要对齐呈现非常重要。
- 说话人分离(Diarization):对于多人对话的视频(特别是会议场景),需要区分不同讲话者 (Speaker diarization using Whisper ASR and Pyannote | by Ritesh | Medium)。一些STT服务内置说话人标签(如指定检测N个说话人);开源方案则可使用独立的说话人分离模型(如 pyannote.audio)结合ASR输出,实现“谁在什么时候说了什么” (Speaker diarization using Whisper ASR and Pyannote | by Ritesh | Medium)。研究者指出,先转录再区分说话人有助于AI更好地理解会议内容 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客)。通过说话人分离,可在转录文本中插入标记(如「主持人:」「发言人A:」),为后续摘要提炼提供上下文。
- 文本规范化:自动转录文本可能存在格式问题,需要处理。如断句和标点修复、数字单位规范、繁简转换等。 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客)指出 Whisper 转录中文时标点可能缺失或错误,需要后处理拼接句子并添加标点。如果引擎未自动加标点,可使用独立的标点恢复模型或规则(如 ITN(Inverse Text Normalization)工具)进行修正。
完成此步骤后,应当得到一份带时间戳的转录文本(例如字幕文件),准确标识了各时间段内各讲话者所说的内容。
3. 文本关键词提取与语义分析(NLP处理)
有了转录文本后,需要运用自然语言处理技术对其进行分析,以抓取重点信息和内容结构:
- 关键字提取:从长文本中提取出高频或重要的术语、专有名词、主题词等。可以使用基于统计和规则的方法(如 TF-IDF 计算、RAKE 算法)或者基于神经网络的模型来识别关键词和短语。关键字有助于了解视频主要话题,也可为摘要生成提供指导。
- 命名实体识别:识别文本中的人名、地名、组织、事件等实体。对新闻类视频,这有助于确定“五何要素”(何人、何事、何地等);对剧情类视频,可以找出主要角色和地点。可利用现有NLP库(如 spaCy、清华NER工具等)进行实体识别。
- 语义分段/主题划分:将全文按话题或章节进行划分。例如对讲座,可以根据内容变化或幻灯片更替将文本分块;对新闻,可以按事件话题分段;对综艺可以按节目环节分场景。可以通过检测某些关键词出现频率的变化、语义相似度(文本嵌入向量聚类)或基于提示词的分段(如检测“接下来”“另一方面”之类的连接词)来自动划分章节。
- 情感/语气分析(可选):分析说话内容的情感倾向或语气强弱。这在新闻评论、访谈等场景下有意义,可辅助理解内容基调(如正面/负面/中立)。有现成的情感分析模型或词典可以应用。
- 多模态分析(可选):如视频包含字幕以外的重要信息(如屏幕上的文字、图像内容),也可以结合计算机视觉分析。例如对讲座视频,做OCR提取幻灯片中的文字;对综艺,可以检测出现的文字特效或场景变化。这些非语音信息可以与转录文本一起分析,丰富语义理解。
经过这一阶段,我们将对视频文本有了结构化的认识,知道了主要涉及的人物/实体、主题关键词以及内容结构。这些信息为下一步摘要生成打下基础,并可帮助算法确定哪些内容是“关键内容”。
4. 关键内容摘要生成(AI摘要)
这是整个流程的核心:让系统生成视频内容的简明摘要。可结合上一阶段的分析结果,利用AI模型从大量文本中提炼出精华:
- 抽取式摘要:从原始文本中直接挑选重要的句子拼接形成摘要。这通常借助前一步的句子评分或关键词匹配来完成。例如利用 TextRank 算法根据句子与全文的相似度排序句子,选取排名靠前的若干句;或者像 Medium 的一个项目中使用了 sumy 库提供的多种算法(LSA、Luhn、LexRank等)对字幕文本进行摘要 (Video Summarizer made easy using NLP | by Aswanth K Anil | Medium)。抽取式摘要实现较简单,能保持原句原意并附带时间戳,但可能缺少连贯性。
- 生成式(抽象)摘要:用预训练的神经网络模型生成一段全新的摘要语句,更加凝练通顺。可使用NLP摘要模型,如基于Transformer的BART、T5模型,或大型语言模型(ChatGPT等)通过调用API生成摘要 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客)。例如在AWS方案中,就通过SageMaker内置的预训练模型将完整转录生成精简的故事梗概 (Video summarization with AWS artificial intelligence (AI) and machine learning (ML) services | AWS for M&E Blog)。生成式摘要能灵活重述内容,适合讲故事式的剧情摘要或复杂会议纪要。
- 摘要长度与粒度:可以根据需求调整摘要的详细程度和长度。如果需要非常简短的概览,可让模型只输出几个句子的概要;如果需要章节概要,则可以对每个语义段分别摘要。例如对超长视频,可能采用分段摘要+总摘要的层次化方案,以保证每段都覆盖又不会遗漏全局结构。
- 人机校正(可选):AI自动摘要可能存在信息丢失或重点偏差,重要场合下可引入人工审核。半自动流程中,可先由AI给出初稿摘要,再由人工进行润色和补充,确保准确无误。
最终的产出将是一段浓缩的文本,总结了视频的关键内容。这个文本摘要可以是逐段的要点列表,或连贯的段落描述,视应用场景而定。
5. 时间戳标注与结构化展示
为了方便读者/用户快速定位视频内容,我们需要将摘要结果与原视频时间轴对应,并以清晰的结构化形式呈现:
- 时间戳对齐:如果采用抽取式摘要,本身可以直接保留原句的时间戳。而对于生成式摘要,需要通过对比摘要句与原始转录文本来确定出处时间。 (Video summarization with AWS artificial intelligence (AI) and machine learning (ML) services | AWS for M&E Blog)提到一种方法:使用文本嵌入模型,将生成的每句摘要向量与原字幕句向量进行匹配,找出对应的原句,从而得到该摘要句相关的视频时间区间。这种语义对齐技术可精确映射摘要内容到视频段落。 (Video Summarizer made easy using NLP | by Aswanth K Anil | Medium)中也描述了通过摘要字幕的时间信息剪辑视频的过程。
- 多粒度结构展示:将摘要按结构分段列出,并标注时间。例如:以章节/话题为单位列出小标题,每个标题后标明起止时间码,下面是该部分的简要总结。如果是会议,可按照议程或讲话者组织要点;如果是新闻集锦,可按每条新闻划分段落。这样用户可以一目了然地看到视频内容结构,并能跳转到感兴趣的部分。
- 交互式链接:在最终展示中,可将时间戳做成可点击的链接(例如00:05,点击即可跳到视频对应位置)或者在播放器中制作章节标记。很多在线播放器(如YouTube章节功能)支持根据提供的时间码自动生成进度条的段落标记。
- 输出形式:摘要可以输出为文本报告、网页、甚至直接生成摘要视频。文本报告适合阅读保存;网页形式可以结合播放器实现交互;而如果要自动生成一个浓缩版视频,可以利用视频编辑工具将对应片段剪辑拼接。例如使用 Python 的 MoviePy 库,根据摘要选出的时间段剪切原视频并合并 (Video Summarizer made easy using NLP | by Aswanth K Anil | Medium)。也可以为摘要视频配上AI合成的语音旁白(借助文本转语音服务,如 Amazon Polly (Video summarization with AWS artificial intelligence (AI) and machine learning (ML) services | AWS for M&E Blog))以增强可看性。
经过上述步骤,我们最终得到了一个结构清晰的摘要结果。例如,对于一个小时的讲座视频,系统可能输出一个含章节标题和要点的提纲,每个要点旁附有播放链接;用户阅读摘要即可大致了解内容,点击时间戳还能观看相应片段进行详细了解。
不同类型视频的适配方案
不同类型的视频在内容形式和用户关注点上有所差异,上述通用流程需要针对这些差异进行定制优化。
会议记录类视频
特点:多人参与讨论,口语化语言,多主题自由切换,重点在于决议和行动项。
适配方案:
- 高精度转录:会议记录要求准确捕捉每位发言者的讲话。应选择对口语噪音鲁棒的模型,并可考虑专业词汇表定制(如公司内部术语)。必要时可通过人工校正重要决议句子的转录。
- 讲话者区分:强制启用说话人 diarization,将发言按人拆分。 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客)的实践表明区分说话人让后续理解更清晰。输出文本中明确标注每段话是谁说的,有助于摘要时归纳每个人的观点及会议结论。
- 重点提炼:摘要时侧重提炼会议的决策、结论和待办事项。可设法识别出包含决策性关键词的句子(如“决定”“采纳”“同意”),以及疑问与解答的要点。然后用生成式摘要模型将这些重点重述为完整的会议纪要段落,包括背景、讨论过程和结论。
- 结构化纪要:按照议程或议题对内容重组。如果会议有明确议题列表,可据此将转录文本分类整理,每个议题生成独立摘要段落,列出讨论要点和结论。最终形成类似会议纪要的文档结构(如“一、XXX议题:… 二、YYY议题:…”)。
- 决议跟踪(可选):如果需进一步自动化,可从摘要中提取待办事项,生成任务列表。比如检测“谁将在什么时候完成什么”这样的句型,输出会议Action Items列表。
讲座或教育类视频
特点:通常由单一讲者授课,伴随幻灯片或板书,有清晰的知识结构和章节。
适配方案:
- 章节划分:根据幻灯片或课程大纲将视频按章节拆解。例如侦测幻灯片翻页来断点(通过帧差异或OCR检测幻灯片页码)。每章内容单独进行摘要,输出时保留章节标题。 ([PDF] Lecture2notes: Summarizing Lecture Videos by Classifying Slides ...)等研究提出通过分析幻灯片内容(检测标题、章节编号)来辅助分段,这是提高讲座视频总结结构清晰度的有效方法。
- 知识点提炼:摘要时着重提炼出知识点和结论。可将每章节的要点汇总为清单。例如定义、定理、例题结果等。在语音转文本的基础上,如果能获取幻灯片文本(OCR识别或讲稿文本),将其与讲解内容结合,可以更全面地提取知识点。
- 术语解释:教育视频中常出现专有名词或术语,可在摘要中加以解释。NLP可以检测出定义型语句(如“X是指…”)并将其纳入摘要,使读者迅速掌握术语含义。
- 板书/公式解析:对于理工类课程,黑板或幻灯片上的公式推导是重点。可考虑专门截取包含公式的图像帧,调用OCR或公式识别,将重要公式记录在摘要中,并附简要说明(哪一步得到该公式,结论是什么)。
- 结构呈现:最终摘要可表现为课程笔记形式。例如按照章节列出,每章下面是该章的核心知识点列表。如果有幻灯片标题,可直接用其作为小标题。必要时可附图(如关键图表/示意图截图)来辅助说明。
新闻或时事报道类视频
特点:通常篇幅较短,信息密度高,关注事件本身及其影响,语言正式。
适配方案:
- 事件识别:利用命名实体和关键词提取确定新闻中的“五何要素”:涉及人物(谁)、事件(做了什么)、时间(何时)、地点(何地)以及原因/目的(为什么)。这些要素往往就是摘要应涵盖的要点。
- 核心信息提炼:摘要直接提炼新闻报道的核心事实和结论。例如“一架客机在XX失事,造成YY伤亡,事故原因调查中”。可以通过分析转录文本的句法,寻找主谓宾结构明确的句子,或者让AI生成时确保上述要素齐全。
- 多条新闻拆分:如果是新闻联播类视频,包含多条简讯,需要先按新闻段落分割(可以依据主播播报间的停顿、画面切换或每段开头的新闻标题)。每条新闻分别摘要,最后汇总呈现时可按新闻标题列表展示。
- 背景/细节缩减:新闻报道可能包含一些背景介绍或次要细节。摘要时可省略次要细枝末节,只保留关键的背景交代。可以设置规则或模型倾向于保留数字(统计数据)、引语中的核心句等,滤除冗余。
- 情感倾向分析(可选):对于时事评论类视频,可以分析主播或受访者的态度。例如检测用词是否正面、中性或负面,在摘要中注明“总体语气积极”或“报道语调客观中立”等。这有助于读者了解新闻的报道角度,但在纯新闻简报中通常省略情感分析。
影视剧或综艺节目视频
特点:时长较长,包含剧情发展或节目环节,可能有多人物、多场景交织。
适配方案:
- 剧情摘要:针对剧情类视频(电影、电视剧集),摘要需要概括主要情节走向和结局走向。可采用生成式模型,让其梳理角色关系和主要冲突解决过程。例如提问模型“这段剧情中发生了什么?主要角色是谁,他们的关系如何?”让模型给出剧情梗概。必要时分成若干段(如按三幕结构:开端、冲突、高潮/结局)进行摘要,以保证逻辑清晰。
- 人物关系提炼:剧集中往往人物众多。可通过分析对白中人物名字共现,构建简单的关系图谱。例如A经常和B同场出现,可推测他们关系密切。NLP的实体共现频次可以辅助这一分析。摘要中可以列出主要角色及其关系/身份(“警长John:负责调查案件”; “嫌疑人Alice:实际为受害者女儿” 等),帮助读者理解故事人物网。
- 场景/章节分类:将整部影片按场景或情节段落划分。例如检测镜头切换和场景转换(室内/室外、白天/黑夜等)来界定场景段落,每段各自摘要。当剧情在不同地点并行发展时,也可以分别摘要后再整合。对于综艺节目,可按节目环节分类,如“游戏环节”“访谈环节”“表演环节”等,分别概括每个环节的看点。这样既保留节目的多样性,又使摘要条理清晰。
- 多模态增强:影视综艺中画面信息丰富。可选取关键帧或片段辅助摘要。例如某重要情节的画面截图,人物表情或动作能说明问题,可以在文本摘要旁附图注解(如果呈现媒介允许的话)。在自动流程中,这可以通过检测影片高潮部分(如音量飙升的打斗场景,观众欢呼的片段)自动抓取代表性帧来实现。
- 避免剧透(可选):如果摘要面向尚未观看正片的受众,可能需要避免关键剧透。可以设置摘要生成时不直接透露结局,而采用引导性语言。这属于摘要策略上的调整。
其他类型视频
对于未列举的其他类型视频(如体育赛事、监控录像、产品演示、Vlog等),可以依据以上通用流程并做相应调整:
- 体育赛事:重点检测精彩时刻(进球、得分、高潮镜头),结合解说词转录进行摘要。可利用音频中观众欢呼、解说激情语调作为线索。摘要注重比赛结果、关键亮点集锦,可产出集锦视频。
- 监控录像:通常无语音,需侧重视觉分析。可引入目标检测和行为识别算法,捕捉异常事件(有人闯入、物体移动)。“摘要”在此情境下可以是事件日志(几点几分发生了什么)而非文字段落。
- 产品演示/评测:通常有解说,对此可类似讲座视频处理,但摘要应提炼产品特点、优缺点等评价要点,结构上可能列成优缺点对比表。
- 个人Vlog:口语随意,主题多样。可根据视频章节(开场、自我介绍、主题内容、结尾)摘要,并提取出博主强调的观点或金句。在情感分析方面也可标注博主情绪(激动/愤怒等)。
- 跨语言/多语言视频:如果视频中包含多种语言,需使用支持多语言的STT模型(如 Whisper (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客))或者对不同语言片段分别调用不同识别服务。此外,可选在摘要后附上不同语言的翻译版本,服务于更广泛的受众。
总之,“其他类型”的视频摘要可以基于统一框架,但在特定内容提取和摘要侧重上灵活调整。例如,无语音时跳过语音识别转而强化视觉分析,有语音则以文本内容为主;娱乐向的视频可能在摘要中加入一些趣味评论,而严肃题材则保持客观中立。这种模块化的工作流设计使我们能够针对不同的视频内容类型进行定制,而不必推倒重来。
优化与扩展方案
在实际应用中,还可以考虑以下优化措施来提升视频摘要工作流的效率和效果:
- 模型自适应与微调:针对特定领域的视频(比如医学会议、法律讲座),可训练或微调语言模型和识别模型,使其更熟悉专业术语和说话风格。例如定制STT的术语表提高转录准确率 (Video summarization with AWS artificial intelligence (AI) and machine learning (ML) services | AWS for M&E Blog),微调摘要模型使其更关注特定信息(如医疗报告中的诊断结果)。
- 分段并行处理:对于超长视频,可并行处理不同片段以加速流程。在预处理阶段将视频音频分段后,多个识别和摘要流程并行运行,最后再合并结果 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客)。需注意并行时内存占用和最后的内容衔接。不过合理的并行可以大幅减少处理总时间。
- 多步提示策略:如前文所述,可让大型语言模型分两步工作:先分析音频/视频类型及需要关注的信息,再生成摘要 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客)。这种逐步提示能引导模型根据不同视频类型调整摘要侧重点,比一次性总结效果更好。虽然模型仍难以完美把握不同用户的偏好 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客),但在实验中此策略已有所提升。
- 人机结合审校:在关键应用场景,可加入人工反馈循环。例如让AI给出摘要草稿,再由人检查添加遗漏信息,尤其是对于AI可能误判的重要细节(人名、数据)进行校正。人工修正的结果还能反过来用于训练模型,不断提高自动摘要质量。
- 结果多样性和可控性:提供接口让用户定制摘要输出,比如允许用户选择摘要长度、侧重哪方面内容(技术细节或结论、严肃或幽默语气)。技术上可以通过调整摘要算法参数或者对生成式模型添加控制标记来实现,可提高摘要的实用性。
- 质量评估:建立自动评价指标监控摘要质量,如与人工摘要的相似度(ROUGE分数)、内容覆盖率、无关信息率等。在大规模处理时,这种评估有助于发现模型系统性的错误,从而针对性改进某些模块(例如发现某类型信息经常遗漏,则调整关键词提取策略)。
通过以上优化,不断迭代,视频自动摘要系统将变得更加高效、智能和可靠。最终目标是大幅降低人工浏览长视频的负担,让用户能以结构化摘要+交互时间轴的形式快速获取所需的信息精华。这一工作流在会议纪要生成、在线教育内容梳理、媒体监控分析等众多领域都有广阔的应用前景。 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客)
参考文献:
- Vu San Ha Huynh et al. “Video summarization with AWS AI and ML services.” AWS for M&E Blog, 2023 (Video summarization with AWS artificial intelligence (AI) and machine learning (ML) services | AWS for M&E Blog) (Video summarization with AWS artificial intelligence (AI) and machine learning (ML) services | AWS for M&E Blog)
- Aswanth K Anil. “Video Summarizer made easy using NLP.” Medium, 2019 (Video Summarizer made easy using NLP | by Aswanth K Anil | Medium) (Video Summarizer made easy using NLP | by Aswanth K Anil | Medium)
- l156789. “语音识别+AI总结项目搭建回顾.” CSDN博客, 2024 (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客) (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客) (语音识别+AI总结项目搭建回顾_fast-whipser-CSDN博客)
- Ritesh. “Speaker diarization using Whisper ASR and Pyannote.” Medium, 2023 (Speaker diarization using Whisper ASR and Pyannote | by Ritesh | Medium)