我选择在PC端进行模型的转换和推理,而开发板则仅用于运行推理。
总览步骤如下:
1.Atlas 200I DK A2 开箱,上电,烧录镜像
2.安装python3.6.9环境
3.下载代码,安装依赖库
4.执行samples中yolov4样例代码
===================================
详细:
1.打开Atlas 200I DK A2包装,烧录E2E版本的镜像,然后上电开机。
- 上电开机:
-
mobaxterm登录:
ip,root密码等开发版说明书里都提供了,不赘述。
共享网络等操作,按说明来做。
2.根据昇腾社区提供的链接安装python3.6.9环境: [URL]. 虽然链接中推荐的是python3.7.5,但我还是选择了python3.6.9。安装完成后,为了方便,我手动编写了一个py.sh脚本并保存在/root目录下。登录时执行source /root/py.sh。同时,我也为python3.6和pip3.6设置了快捷命令。
3.根据开源中国码云上的Ascend/samples项目来下载代码并安装必要的库。安装过程中,遇到了两个问题:一是关于opencv的安装,二是关于pyav库的安装。感谢社区成员的帮助,我成功解决了这两个问题。
4.运行yolov4示例代码时,首先需要设置环境变量,然后选择合适的样例来运行。模型的准备工作是在PC端完成的,通过虚拟机上的ubuntu22.04来执行。使用atc工具转换适用于200I DK A2的模型,并按照文档中的说明操作。最后,成功运行yolov4.py。
结论:虽然开发板运行推理的效率稍慢,但结果与服务器上的推理效果一致。
效果目测是一样的。