目录
1、一维特征向量下的贝叶斯模型
(1)一维特征向量下的贝叶斯模型
贝叶斯分类是机器学习中应用极为广泛的分类算法之一,其产生来自于贝叶斯对于逆概问题的思考,朴素贝叶斯是贝叶斯模型当中最简单的一种。其算法核心为贝叶斯公式:
其中P(A)为事件A发生的概率
P(B)为事件B发生的概率
P(A|B)表示在事件B发生的条件下事件A发生的概率
同理P(B|A)则表示在事件A发生的条件下事件B发生的概率
首先以一个更详细的例子来讲解一下贝叶斯公式更加偏实战的应用:如何判断一个人是否感冒了。假设已经有5个样本数据,如下表所示:
打喷嚏 (X1) |
感冒 (Y) |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
打喷嚏 (X1):其中数字1表示打喷嚏&#