Python朴素贝叶斯模型算法【附代码】

目录

1、一维特征向量下的贝叶斯模型

(1)一维特征向量下的贝叶斯模型

(2)二维特征向量下的贝叶斯模型

(3)n维特征向量下的贝叶斯模型

(4)朴素贝叶斯模型简单代码演示

2、案例 - 肿瘤预测模型

(1)案例背景

(2)数据读取与划分

1、读取数据

2、划分特征变量和目标变量

3、模型预测 - 预测数据结果


1、一维特征向量下的贝叶斯模型

(1)一维特征向量下的贝叶斯模型

       贝叶斯分类是机器学习中应用极为广泛的分类算法之一,其产生来自于贝叶斯对于逆概问题的思考,朴素贝叶斯是贝叶斯模型当中最简单的一种。其算法核心为贝叶斯公式:

其中P(A)为事件A发生的概率

P(B)为事件B发生的概率

P(A|B)表示在事件B发生的条件下事件A发生的概率

同理P(B|A)则表示在事件A发生的条件下事件B发生的概率

       首先以一个更详细的例子来讲解一下贝叶斯公式更加偏实战的应用:如何判断一个人是否感冒了。假设已经有5个样本数据,如下表所示

打喷嚏 (X1)

感冒 (Y)

1

1

1

1

0

1

1

1

1

0

       打喷嚏 (X1):其中数字1表示打喷嚏&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值