想详细了解贝叶斯算法的,可点击笔者的另一篇文章案列分析带你彻底了解贝叶斯
在这里我将写一个简单的贝叶斯代码实现。
首先先导入库
import pandas as pd
为了可以帮助更好地理解模型的性能,找出模型可能存在的问题,我们要创建一个混淆矩阵的可视
化
def cm_plot(y, yp):
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
cm = confusion_matrix(y, yp)
plt.matshow(cm, cmap=plt.cm.Blues)
plt.colorbar()
for x in range(len(cm)):
for y in range(len(cm)):
plt.annotate(cm[x, y], xy=(y, x), horizontalalignment='center',
verticalalignment='center')
plt.ylabel('True label')
plt.xlabel('Predicted label')
return plt
进行数据预处理,将数据读入,并删除第一行序列
数据获取
部分数据展示

data = pd.read_csv("iris.csv", encoding='utf8', engine='python', header=None)
data = data.drop(0, axis=1) # 把第1列删除,
data.head()
对原始数据集进行切分
X_whole = data.drop(5, axis=1)
y_whole = data[5]
在切分数据集
from sklearn.model_selection import train_test_split
x_train_w, x_test_w, y_train_w, y_test_w = \
train_test_split(X_whole, y_whole, test_size=0.2, random_state=0)
导入朴素贝叶斯分类器,实例化贝叶斯分类器分类。
from sklearn.naive_bayes import MultinomialNB
ml = MultinomialNB(alpha=1)
传入·训练集数据
ml.fit(x_train, y_train)
训练集与测试集预测,绘制混淆矩阵
train_pred = classifier.predict(x_train_w)
cm_plot(y_train_w, train_pred).show()
test_pred = classifier.predict(x_test_w)
cm_plot(y_test_w, test_pred).show()
图像如下


进行预测,并打印出分类报告。
from sklearn import metrics
pre = ml.predict(x_test)
print(metrics.classification_report(y_test, pre))
plt.show()
显示结果:

本文介绍了使用Python和scikit-learn库实现朴素贝叶斯分类器的过程,包括数据预处理、模型训练、预测以及混淆矩阵的可视化。通过实际案例展示了如何评估模型性能。
1425

被折叠的 条评论
为什么被折叠?



