Python学习6:地球数据计算

该文描述了一个使用Python的math库来计算地球的表面积、体积和赤道周长的问题。还涉及了当绳子围绕地球赤道增加1米后,计算由此产生的空隙大小,并判断老鼠是否能通过这个空隙。计算过程中考虑了浮点数运算的精度问题和数学公式顺序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

类型:数值运算‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬


描述‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

地球的半径是6371km,假设地球是一个规则的球体,完成以下计算并依次分行输出结果,结果保留2位小数,输出格式请参考输入输出示例。π值引用math库中常数pi的值。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

计算地球表面积(表面积公式S = 4πR2) 计算地球体积(体积公式是V = 4πR3/3    注意:为避免浮点数除法顺序导致运算精度问题,必须严格按照本题所给公式顺序运算) 计算地球赤道的周长(圆周长公式是L = 2πR) 假设有一根绳子正好可以紧贴地球绕赤道一周,紧密的捆绑住地球。现在将绳子延长1米,仍围绕地球赤道一周,假设绳子与地球表面间空隙均匀,计算绳子与地球之间的空隙大小。 判断一只正常大小的老鼠能否从这个空隙穿过?可假设老鼠身体截面为圆柱,且圆柱最粗处直径为10cm,若空隙大小10cm,输出:“老鼠可以从空隙中钻过”,否则输出:“老鼠无法通过空隙”。根据判定结果进行输出时,可以用if 条件表达式进行判定,满足条件时的输出放在if分支下的缩进语句块中;不满足条件的输出放在与if对齐的else分支下的缩进语句块里。

示例‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

输出:	
地球表面积为XXXX.XX平方米
地球体积为XXXX.XX立方米
地球赤道周长为XXXX.XX米
空隙大小为XXXX.XX米
老鼠可以从空隙中钻过/老鼠无法通过空隙

import math


radius = 6371 * 1000
# 1. 计算地球表面积(表面积公式S = 4π(R**2))
#=======================================================
# 补充你的代码
surface_area=4*math.pi*(radius**2) 

print(f'地球表面积为{surface_area}平方米')

# 2. 计算地球体积(体积公式是V = 4π(R**3)/3)
V=4*math.pi*(radius**3)/3
print(f'地球体积为{V:.2f}立方米')


# 3. 计算地球赤道的周长(圆周长公式是L = 2πR)
L=2*math.pi*radius
print(f'地球赤道周长为{L:.2f}米')


# 4.计算绳子与地球之间的空隙大小,结果保留2位小数
K=(2*math.pi*radius+1)/(2*math.pi)-radius
print(f'空隙大小为{K:.2f}米')


# 5.判断老鼠是否可以从空隙中钻过
if  K>=0.1:
    print(f'老鼠可以从空隙中钻过')


else:
    print('老鼠无法通过空隙')

# 地球的半径是6371km,假设地球是一个规则的球体,完成以下计算并输出结果,结果保留2 位小数。
# π 值引用math 库中常数PI 的值。
# 1. 计算地球表面积(表面积公式S = 4πR2)
# 2. 计算地球体积(体积公式是V = 4πR3/3)
# 3. 计算地球赤道的周长(圆周长公式是L = 2πR)
# 4. 假设有一根绳子正好可以紧贴地球绕赤道一周,紧密的捆绑住地球。现在将绳子延长1 米,
# 仍围绕地球赤道一周,假设绳子与地球表面间空隙均匀,计算绳子与地球之间的空隙大小。
# 5. 判断一只正常大小的老鼠能否从这个空隙穿过?可假设老鼠身体截面为圆柱,且圆柱最粗处直径为10cm,
# 若空隙大小10cm,输出:“老鼠可以从空隙中钻过”,否则输出:“老鼠无法通过空隙”。
# 根据判定结果进行输出时,可以用if 条件表达式进行判定,满足条件时的输出放在if 分支下的缩进语句块中;
# 不满足条件的输出放在与if 对齐的else 分支下的缩进语句块里。
import math


radius = 6371 * 1000
# 1. 计算地球表面积(表面积公式S = 4πR2)
surface_area = 4 * math.pi * radius * radius
print(f'地球表面积为{surface_area}平方米')

# 2. 计算地球体积(体积公式是V = 4πR3/3)
volume = 4 * math.pi * (radius ** 3) / 3
print(f'地球体积为{volume:.2f}立方米')

# 3. 计算地球赤道的周长(圆周长公式是L = 2πR)
circumference = 2 * math.pi * radius
print(f'地球赤道周长为{circumference:.2f}米')

# 4.计算绳子与地球之间的空隙大小
new_radius = (circumference + 1) / (2 * math.pi)
space = new_radius - radius
print(f'空隙大小为{space:.2f}米')  # 结果保留2位小数

# 5.判断老鼠是否可以从空隙中钻过
if space * 100 > 10:
    print('老鼠可以从空隙中钻过')
else:
    print('老鼠无法通过空隙')

<think>好的,我现在要逐行解释用户提供的这段用于生成圆上点坐标的Python代码。首先,我需要仔细阅读代码,理解每一行的作用,结合数学知识来解释其实现原理。用户可能希望了解代码背后的数学概念,比如如何利用三角函数生成圆上的点,以及参数的含义。 首先,代码开头导入了math模块,这是为了使用其中的三角函数和常数π。接着定义了一个函数generate_circle_points,该函数接受三个参数:center_x、center_y和radius,分别表示圆心的x坐标、y坐标和半径。函数内部初始化了一个空列表points来存储生成的坐标点。 然后是一个for循环,循环变量angle_degrees从0度到359度,每次增加10度。这里需要注意的是,数学中的三角函数通常使用弧度而非角度,因此在计算坐标时,需要将角度转换为弧度。循环内部使用math.radians函数将角度转换为弧度,然后分别计算x和y坐标。x坐标的计算是圆心x加上半径乘以角度的余弦值,y坐标则是圆心y加上半径乘以角度的正弦值。这里应用了圆的参数方程,其中参数θ是角度,参数方程形式为$x = r\cosθ + h$,$y = r\sinθ + k$,其中$(h,k)$是圆心坐标。 计算完每个点的坐标后,使用append方法将坐标元组添加到points列表中。循环结束后,函数返回这个列表。 接下来,代码调用了这个函数,传入center_x=0、center_y=0和radius=5,生成坐标点,打印结果。用户可能想确认这些点是否确实在半径为5的圆上,以及间隔10度的设置是否合理。例如,360度除以10度得到36个点,这应该覆盖整个圆周。不过,实际循环中当angle_degrees为350度时,下一个是360度,但range(0, 360, 10)不包括360,所以实际生成的是0到350度之间的36个点,间隔10度,共36个点,覆盖整个圆周。 在解释过程中,需要注意数学公式的正确性,比如参数方程的应用是否正确,以及代码实现是否准确反映了数学原理。同时,要指出代码中的关键点,如角度到弧度的转换,三角函数的使用,以及循环步长的设置等。可能还需要提到这种方法的应用场景,例如在图形绘制、几何计算或游戏开发中生成圆形路径等。 此外,用户可能对代码的优化或修改感兴趣,例如如何调整步长来改变点的密度,或者如何处理浮点数的精度问题。但根据当前问题,主要是逐行解释现有代码的功能,因此需要保持解释的准确性和清晰度,确保用户能够理解每一行代码的作用及其背后的原理。</think>### 逐行解释生成圆上点坐标的Python代码 ```python import math def generate_circle_points(center_x, center_y, radius): points = [] for angle_degrees in range(0, 360, 10): angle_radians = math.radians(angle_degrees) x = center_x + radius * math.cos(angle_radians) y = center_y + radius * math.sin(angle_radians) points.append((x, y)) return points circle_points = generate_circle_points(0, 0, 5) print(circle_points) ``` #### 代码解析 1. **`import math`** 导入Python内置数学库,用于调用三角函数(如`math.cos`)和角度转换函数(如`math.radians`) 2. **`def generate_circle_points(...)`** 定义函数,参数说明: - `center_x`:圆心横坐标 - `center_y`:圆心纵坐标 - `radius`:圆半径 3. **`points = []`** 初始化空列表,用于存储生成的坐标点 4. **`for angle_degrees in range(0, 360, 10)`** 循环生成角度值(单位:度): - 从$0^\circ$开始 - 到$360^\circ$结束(实际取值到$350^\circ$) - 步长$10^\circ$,共生成36个均匀分布的角度 5. **`angle_radians = math.radians(angle_degrees)`** 将角度转换为弧度(三角函数计算需要弧度制) 6. **`x = ... math.cos(angle_radians)`** 计算x坐标: $$x = h + r \cdot \cos(\theta)$$ 其中$(h,k)$为圆心坐标,$\theta$为当前角度弧度值 7. **`y = ... math.sin(angle_radians)`** 计算y坐标: $$y = k + r \cdot \sin(\theta)$$ 8. **`points.append((x, y))`** 将坐标元组加入结果列表 9. **`return points`** 返回所有坐标点的列表 10. **函数调用与输出** 示例生成以原点$(0,0)$为圆心、半径$5$的圆周坐标点,打印结果 #### 数学原理 代码基于圆的参数方程: $$(x-h)^2 + (y-k)^2 = r^2$$ 参数化形式为: $$ \begin{cases} x = h + r \cos \theta \\ y = k + r \sin \theta \end{cases} $$ 其中$\theta \in [0, 2\pi)$,对应代码中的`angle_radians`[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值