人工智能前沿
文章平均质量分 73
牛哥带你学代码
牛哥带你详细解读程序代码,赶快一起来学鸭!!!
展开
-
查找论文源码、数据集方式
如何查找论文代码以及对应的数据集原创 2024-10-15 20:38:20 · 336 阅读 · 0 评论 -
ViT(Vision Transformer详解)
详细解释什么是ViT,以及对于patch进行了相关解释原创 2024-10-08 14:26:06 · 754 阅读 · 0 评论 -
VGG16模型实现MNIST图像分类
VGG16模型实现MNIST图像分类详细教程原创 2024-10-07 22:31:47 · 1021 阅读 · 0 评论 -
CIFAR-10 数据集图像分类与可视化
还有一个卷积层,输入通道数为32,输出通道数为64,卷积核大小为5x5,零填充。print(output.shape):打印输出结果的形状,这里输出的形状为 torch.Size([64, 10]),表示有64个样本,每个样本对应一个长度为10的输出向量,其中每个元素表示对应类别的预测分数或概率。input = torch.ones((64, 3, 32, 32)):创建了一个大小为64x3x32x32的张量作为输入数据,表示64个样本,每个样本的图像大小为32x32,通道数为3(假设是RGB图像)。原创 2024-08-01 14:05:32 · 1815 阅读 · 1 评论 -
深度学习图像处理环境搭建
很多人不了解Anaconda存在的意义,就是为了弥补python多版本不兼容问题(在安装过程中,我们不难发现,总是报错,说版本不兼容,让我们安装版本>=xxx或者版本原创 2024-08-01 10:05:05 · 706 阅读 · 0 评论 -
XML标签转yolo的txt格式标签代码
实现xml到txt格式数据文件的转换原创 2024-05-28 09:26:35 · 414 阅读 · 0 评论 -
蓝桥备赛——素数
详细解释素数筛的原理以及相关内容原创 2024-04-08 23:31:57 · 123 阅读 · 0 评论 -
计算机视觉入门
简要介绍了计算机视觉入门相关背景以及使用TensorFlow实现了基本的CNN原创 2024-04-08 09:30:30 · 557 阅读 · 0 评论 -
常用目标检测算法集锦
通过本文,快速了解目标检测发展史以及对应主流算法的详细介绍原创 2024-03-29 00:46:24 · 557 阅读 · 0 评论 -
前沿科技速递——YOLOv9
结合上述两个全新的概念,是的YOLOv9模型相较以往,更好地解决了深度学习模型中的信息丢失问题,特别是在对象检测这类复杂任务中。该模型在保持轻量级和高效性的同时,显著提升了对象检测任务的准确性mAP等指标,超越了当前最先进的方法,如YOLOv5、YOLOv6、YOLOv7和YOLOv8等。全面进行了实验验证,一如既往使用标准的MS COCO数据集,验证YOLOv9的高效与准确率。实验结果不仅展示了YOLOv9在对象检测性能上的显著提升,还包括了对模型参数效率和计算效率的深入分析。YOLOv9正式推出了!原创 2024-02-23 11:29:06 · 966 阅读 · 0 评论 -
深度学习基础——端云协同视觉应用部署
介绍了端云协同移动部署基础知识原创 2024-02-21 17:35:31 · 586 阅读 · 0 评论 -
深度学习基础——SSD目标检测
SSD相关基础知识原创 2024-02-21 17:19:16 · 2268 阅读 · 2 评论 -
深度学习基础——YOLOv5目标检测
详细介绍了YOLO相关内核原理。原创 2024-02-21 13:44:11 · 2711 阅读 · 0 评论 -
深度学习基础——GAN生成对抗网络
详细解释GAN生成对抗网络基本原理原创 2024-02-21 11:29:45 · 1356 阅读 · 0 评论 -
深度学习基础——U-Net图像分割
详细解释U-Net原创 2024-02-20 20:44:17 · 1873 阅读 · 0 评论 -
【创造者】人工智能前沿知识
近年来,NLP 领域的深度学习方法取得了重大突破,包括BERT、GPT和XLNet等模型,这些模型都是基于 Transformer 架构的,并使用了大规模预训练技术,使得在语义理解、问答、文本生成等任务中都达到了领先水平。联邦学习:联邦学习是一种分布式机器学习方法,可以在保护数据隐私的前提下,将多个设备或数据中心的数据进行集成和分析。深度强化学习:深度强化学习是强化学习领域中的一种技术,结合了深度学习和强化学习的思想,可以用来解决更复杂的问题。元学习:元学习是一种机器学习方法,可以学习如何学习。原创 2023-04-07 18:41:58 · 1421 阅读 · 1 评论 -
【创作赢红包】人工智能在计算机视觉中的应用
在图像分类方面,人工智能可以通过训练深度神经网络,实现对图像的分类和识别,比如对数字、字母、动物、植物等进行分类和识别。本文主要针对人工智能在计算机视觉中的应用进行了综述,并探讨了其在图像分类、物体检测、人脸识别等方面的应用及其存在的问题和未来的发展方向。综上所述,人工智能在计算机视觉中的应用具有广泛的前景和潜力,可以为我们的生活和工作带来更多的便利和效益。此外,还需要进一步发展新的人工智能算法和技术,如强化学习、迁移学习等,以实现对更加复杂和高级的任务的自动化处理和解决。原创 2023-04-01 17:26:03 · 310 阅读 · 0 评论