深度学习图像处理环境搭建

Anaconda安装

Anaconda介绍

Anaconda是一个用于科学计算和数据科学的开源发行版,它包含了许多流行的Python库和工具,旨在简化数据分析和机器学习任务的开发过程。Anaconda提供了一个集成的开发环境,包括Python解释器、包管理工具(conda)、以及大量预安装的科学计算包,如NumPy、Pandas、Matplotlib、SciPy等。它还包括了Jupyter Notebook,这是一个交互式的编程环境,可以创建和共享实时代码、可视化和解释性文档。Anaconda的优点在于其易于安装、跨平台性、强大的包管理功能以及对大数据处理的支持,使得数据科学家和研究人员能够更轻松地进行数据分析、可视化和机器学习模型的构建。

Anaconda优势

很多人不了解Anaconda存在的意义,就是为了弥补python多版本不兼容问题(在安装过程中,我们不难发现,总是报错,说版本不兼容,让我们安装版本>=xxx或者版本<xxx的python版本),但是,当我们仅仅使用pycharm时,往往编辑器只能存在一个python版本,因此,我们需要通过conda创建一个虚拟环境来使得多版本的python同时存在,我们只需要在需要相应版本python时,在编辑器中调用相应版本的python进行使用即可。

Anaconda下载

查找anaconda官网,进入网站进行下载,选择对应版本的anaconda。如下图所示:

下载anaconda后创建环境等基础指令

关于如何创建新的虚拟环境,这里不再赘述。

# 创建虚拟环境 
conda create -n 虚拟环境名 python=3.7 //python版本
# 激活虚拟环境
conda activate 虚拟环境名 

有关pip,由于我新创建了一个环境,所以说在这里创建完虚拟环境后,pip版本较低,需要对其进行升级。在此,升级使用

python -m pip install --upgrade pip

问题1:conda默认安装路径的解决

由于配置环境中会安装很多包,而默认的安装路径又在C盘,因此会导致C盘特别容易变红。为此,我修改了conda的默认安装路径。

 上面两张图片是我电脑中的环境,可以看到对应的虚拟环境位置。

打开anaconda prompt,输入指令查看安装路径

#查看conda 信息

conda info 或

conda config –show

使用下面的命令显示 envs_dirs 不存在(忘记当时的报错提示了,反正就是改不了)

conda config --add envs_dirs newdir # 增加环境路径

conda config --remove envs_dirs newdir  # 删除环境路径

按下面2的的操作最后可以了。

添加环境位置

找到.condarc文件

记事本打开并添加,注意将E://Anaconda//envs换成自己要保存的位置,建议放在anaconda安装文件夹下的envs文件夹中.

envs_dirs:

  - E://Anaconda//envs

修改好后,重新创建一遍环境,查看环境的安装路径在哪里。如果还是不行,看下面一条替代方案:

如果环境位置没有切换,查看一下目标路径的文件夹的权限。

如果要修改,则应该修改如下权限为。如上图所示用户权限为全部勾选。我这里是全勾上了的

修改用户权限后,再次创建新的虚拟环境,可以看到conda的默认安装路径转变成了前面condarc中新修改的安装路径了。

修改如上图所示。

Pytorch安装

Pytorch介绍

PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理等应用领域。它由Facebook的人工智能研究团队开发,并受到学术界和工业界的广泛使用。PyTorch以其高度灵活性和易用性而闻名,它支持动态计算图(也称为自动微分系统),使得模型的设计、调试和优化更为直观和方便。

PyTorch提供了丰富的API,可以轻松地进行张量计算,类似于NumPy,并且支持强大的GPU加速,这使得其在处理大规模数据集时非常高效。此外,PyTorch还拥有一个庞大的生态系统,包括用于构建和训练神经网络的工具库,如TorchVision、TorchText和TorchAudio。这些工具不仅提供了预处理和标准数据集的接口,还包含了多种预训练模型,可以帮助开发者加速开发过程和提高模型性能。PyTorch已经成为学术研究和产业应用中深度学习的首选框架之一。

问题2:Pytorch框架与其他版本的兼容性

安装pytorch框架时,遇到的最棘手的问题就是版本不兼容问题,由于深度学习框架需要安装的环境较多,对应多个版本的相互不兼容问题也就更容易出现。

Pytorch、CUDA、Python三者之间存在相互依赖关系,在这里放上一张依赖关系图作为参考。不同版本之间存在依赖关系。

Pytorch安装过程

登录pytorch官网,查找到对应安装位置,复制安装命令行直接安装即可。

在pytorch官网上找到对应的安装命令行,激活对应的虚拟环境后直接进行运行相关代码即可安装对应GPU版本的pytorch框架。(当然,假如电脑没有GPU的话,也可以安装对应CPU版本的pytorch框架)

Tip:使用nvidia-smi查看相关型号后,输入上述代码安装对应版本的cuda

注意,安装的时候需要在对应的虚拟环境中安装才有用,要不然运行的时候无法看出来有什么区别。不要还没有激活对应的虚拟环境就安装对应版本的pytorch。

CUDA安装

使用nvidia -smi查看电脑对应的驱动版本号、当前设备的显卡数量与显卡的型号等。

对应各种版本的获取:

首先打开anaconda prompt,激活对应虚拟环境。

导入torch并获取对应版本

import torch

torch.__version__

在prompt命令行中就可以看到对应的torch版本了

torch.cuda.is_available()

使用上述代码,查看对应的cuda是否可用。

码字不易,假如对您有用, 麻烦个点赞~  谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛哥带你学代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值