欧拉法(Euler‘s method)求常微分方程(ODE)近似解

求微分方程的近似解在实际问题的解决中具有极其重要的作用,因为在大多情况下我们很难求出微分方程的函数表达式,或是表达式过于复杂,此时便可以用数值计算的方法求该微分方程的近似解。欧拉法便是其中一种最为简单的求常微分方程近似解的方法,该方法较为简单,同时也有比较明显的缺陷,但也是其它的求解微分方程近似解方法的基础。

算法原理

欧拉法求解过程是一个递归的过程,这个思想和牛顿法、梯度下降法是相似的。并且它将函数离散化,分割成一个个小段来求解。欧拉法求解的常微分方程的形式通常为:

\begin{Bmatrix}\frac{dy}{dx}=f(x,y) ,&a\leq x\leq b\\y(a)=y_{0} \end{matrix}

右边是关于x,y的任意函数,如2x,3y+2或x^{2}+y^{2}等都是可以的,但y是x的函数,并且函数定义在区间[a,b]内,初值条件为x=a时函数值为y_{0}。欧拉法求解思想是把区间[a,b]分成n份,那么每一小段长度就是h=\frac{b-a}{n},初始时左端点a=x0,那么下一个节点x1=x0+h,再下一个就是x2=x1+h,......以此类推,最后X_{n}=b。我们对上面的微分方程两边同时从x_{k}x_{k+1}(k=0,1...n-1)进行积分,就得到下面结果,即:

y(x_{k+1})-y(x_{k})=\int_{x_{k}}^{x_{k+1}}f(x,y(x))dx

这样便可以由初始条件y(x0)=y_{0}与该条件式逐个递推,依次求得y(x1),y(x2)...y(xn)各个函数值。对于右端的积分,在实际计算过程中也需要用近似表达式来替代。欧拉法使用的是由矩形面积来近似替代,即:

\int_{x_{k}}^{x_{x+1}}f(x,y(x))dx\approx f(x_{k},y(x_{k}))(x_{k+1}-x_{k}) \\ =f(x_{k},y(x_{k}))h \ (k=0,1...n-1)

这样我们就得到了最终的递归表达式:

y_{k+1}=y_{k}+f(x_{k},y_{k})h

从而能够比较简便地进行计算。

算法实现

兔兔这里以一个微分方程为例:

\begin{Bmatrix}\frac{dy}{dx} =y-\frac{2x}{y},&0\leq x\leq 1 \\y(0)=1\end{}

对应前面的表达式,这里f(x,y(x))=y-\frac{2}{y},所以计算过程为y_{1}=y_{0}+h(\frac{2x_{0}}{y_{0}}),并且x0=0,y0=1,之后再求解y2,y3...yn。h根据需要可以做不同调整,如果h=0.1就是分10份,h越小,分的份数越多,点越来越密集,就可以体现函数的形式。

import numpy as np
import matplotlib.pyplot as plt
y0=1 #初始条件
def f(x,y):
    return y-2*x/y
def Eular(y0,n,f):
    y=[y0] #储存各个点的函数值
    y0=y0
    for x in np.linspace(0,1,n):
        '''求函数在区间[0,1]近似解,分n份'''
        y1=y0+f(x,y0)/n
        y.append(y1)
        y0=y1
    return y
y=Eular(1,10,f=f)
x=np.linspace(0,1,len(y))
plt.plot(x,y,color='blue')
plt.show()

该函数是=的精确解为y=\sqrt{1+2x},我们最终把精确解,n=10,n=100的结果进行比较,图像如下所示:

 其中绿色的是精确解,红色对应的n=100,蓝色为n=10,我们发现结果比较接近,并且随着n的增加近似效果也有所提高。但是该方法也有缺点,就是随着计算步数增加误差逐渐增多,并且误差也是比较大的。原因之一是欧拉法是一种一阶方法,其局部阶段误差也是比较大的,其再节点x_{k+1}局部阶段误差为:

R(x_{k+1})=y(x_{k+1})-y(x_{k})-hf(x_{n},y(x_{n}))

所以为了减少误差,就需要其它的一些方法,如改进欧拉法,龙格-库塔法等。

总结

欧拉法作为微分方程近似解的一种求解方法,无论是其数值计算的思想还是对于实际问题的解决都是有重要意义的,但欧拉法的问题也是值得注意的,因此在欧拉法的基础上发展其它精度更高的方法是十分必要的。

### 回答1: 欧拉法是一种见的数值积分方法,用于微分方程。它基于微分方程的定义,即导数是函数在某一点的斜率。因此,欧拉法使用这个定义来逼近函数在未知点的值。 下面是使用 MATLAB 实现欧拉法的示例代码: ```matlab % 定义微分方程 dydx = @(x, y) x - y; % 定义初始条件 x0 = 0; y0 = 1; % 定义步长和终止条件 h = 0.1; x_end = 1; % 初始化结果向量 x = x0:h:x_end; y = zeros(1, length(x)); y(1) = y0; % 使用欧拉法迭代 for i = 2:length(x) y(i) = y(i-1) + h*dydx(x(i-1), y(i-1)); end % 绘制结果 plot(x, y, '-o'); xlabel('x'); ylabel('y'); ``` 在这个示例中,我们使用了一个简单的微分方程 `dy/dx = x - y`,它的是 `y = x - 1 + 2*exp(-x)`。我们将初始条件设置为 `x0 = 0`,`y0 = 1`,步长设置为 `h = 0.1`,并迭代到 `x_end = 1`。 在迭代过程中,我们使用欧拉法的公式 `y_i = y_{i-1} + h*f(x_{i-1}, y_{i-1})` 来逼近函数在未知点的值。最后,我们将结果绘制出来,可以看到它与接近。 希望这个示例能够帮助你理如何使用 MATLAB 实现欧拉法。 ### 回答2: Euler法(Euler's Method)是一种简单的数值微分方程的方法。它的基本思路是将微分方程转化为离散形式,再根据初始条件逐步逼近精确的过程。这种方法的优点在于容易实现,但缺点也很明显,比如精度较低、步长需要足够小等。 在 MATLAB中实现Euler微分方程的步骤如下: 1.定义微分方程模型:我们需要将微分方程转化为离散形式,通采用差分法。对于形如y'=f(x,y)的一阶微分方程,可以采用Euler前进差分公式: y_n+1 = y_n +hf(x_n,y_n) 其中h为步长,n为步数。 2.设定初始条件:初始条件指在微分方程初值问题中,给定的函数值和自变量值。通以y_n和x_n为起点开始迭代。 3.设定步长h:步长h决定了迭代的速度和精度。一般为数或根据实际情况动态调整。在MATLAB中,可以使用命令odeget来获取ODE器默认步长。 4.进行迭代计算:根据Euler前进差分公式,逐步计算y的值,直到达到目标精度或满足其他条件停止迭代。在MATLAB中,我们可以使用ode45等ODE器来实现数值。 例如,我们想要微分方程y'=2x+y,初始条件为y(0)=1,在[0,1]区间以步长0.1进行,可以用以下MATLAB代码实现: function dydt = fun(x,y) dydt = 2*x+y; % 定义微分方程模型 end [t,y] = ode45(@fun,[0,1],1); % 微分方程 plot(t,y,'-o') % 绘制的图像 通过图像可以看出,Euler法的精度不够高,在靠近终点的地方误差较大。因此,在实际应用中需要根据情况选择合适的数值法。 ### 回答3: Euler法是一种基本的数值微分方程ODE)的方法,它基于泰勒级数展开到第一阶导数级别,并在时间步长上线性外推。它通适用于简单的ODE问题,对于复杂的问题,可能需要更高阶数的方法来决。在Matlab中,我们可以使用如下代码来实现Euler法。 首先,我们需要准备我们需要在ODE中使用的初始条件和ODE自变量的范围。假设我们要决的ODE如下: dy/dx = -y, y(0) = 1, x在[0,1]范围内。我们可以设置如下的条件: % 设置ODE的初始条件和ODE自变量范围 y0 = 1; % 初始条件 xrange = [0,1]; % ODE自变量的范围 接下来,我们需要定义ODE函数。在这种情况下,我们要决的ODE是dy/dx = -y,因此,我们将定义如下的ODE函数: % 定义ODE函数 f = @(x,y) -y; 然后,我们需要定义时间步长和时间步数。时间步长可以根据需要设置为任意值。在这种情况下,我们将时间步长设置为0.1,时间步数设置为(1-0)/0.1 = 10。请注意,这是一个固定的时间步长模式,Euler法没有考虑逐步调整时间步长大小的能力。 % 定义时间步长和时间步数 h = 0.1; % 时间步长 n = round((xrange(2) - xrange(1))/h); % 时间步数 然后,我们可以开始使用Euler方法ODE。在Euler法中,我们需要一个初始条件y0和一个步骤循环来计算每个时间步长的值。我们可以使用下面的代码来实现: % 计算每个时间步长的值 y = zeros(n+1, 1); % 初始化y向量 x = linspace(xrange(1), xrange(2), n+1); % 初始化x向量 y(1) = y0; % 设置初始值 for i = 1:n y(i+1) = y(i) + h*f(x(i),y(i)); end 最后,我们可以使用Matlab的plot函数来绘制图形,显示Euler法得到的: % 绘制的图形 plot(x,y,'-o', 'LineWidth',2); xlabel('x'); ylabel('y'); title('Eulery''=-y, y(0)=1'); grid on; 这里,我们使用"-o"标记来绘制每个时间步长的点。我们可以看到,Euler法得到的粗糙,因此可能需要更多的时间步长和更精细的ODE方法来得到更准确的
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小兔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值