最长回文子串「动态规划」

/**
 * @param {string} s
 * @return {string}
 */
// 思路:DP
// 限定长度,从小到达枚举
// 有意思的点:初始化

var longestPalindrome = function(s) {
    // 二维数组初始化
    let dp = []
    let len = s.length
    for(let i=0;i<len;i++){
        dp[i] = []
    }
    // dp值初始化
    let st=0,ed=0
    // 本身就会成立
    for(let i=0;i<len;i++){
        dp[i][i] = 1
    }
    for(let i=0;i<=len-2;i++){
        if(s[i]===s[i+1]){
            dp[i][i+1] = 1
            st = i
            ed = i+1
        }
    }
    // 开始DP了,以字串的长度不同进行考虑
    for(let n=3;n<=len;n++){
        // 枚举左边界
        for(let i=0;i<len-1;i++){
            // 得到右边界
            let j = i + n - 1
            if(dp[i+1][j-1]){
                if(s[i] === s[j]){
                    dp[i][j] = 1
                    st = i
                    ed = j
                }
            }
        }
    }
    return s.substring(st,ed+1)
};

这道题主要是想明白:

1.状态怎么表示

2.怎么初始化

3.状态转移方程是啥

4.st 和 ed记录结束状态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值