实现原理
随机信号通过线性系统分析的中心问题是:给定系统的输入函数(或统计特性:均值和自相关函数)和线性系统的特性,求输出函数。设L为线性变换,信号X(t)为系统输入,Y(t)为系统的输出,也是随机信号。即有:
众所周知,LTI系统又可以表示为
其中是系统的冲激响应。如果考虑傅里叶变换,令
则
下面来分析输出随机信号的均值和相关函数。
依定理5.1,对于任何稳定的线性系统有
白噪声的Simulink仿真
对于一个实际系统而言,其测量信号常会受到噪声的干扰,在理论分析时常常用白噪声作为干扰信号,虽然理想的白噪声物理上并不存在,但由于白噪声在数学处理上具有简单方便的特点,所以在实际应用中占有重要的地位。实际上,当我们所研究的随机过程,在比所考虑的有用频带宽得多的范围内具有均匀的功率谱密度时,就可以把它当作白噪声来处理,而不会带来多大的误差。在完成这次作业的过程中,我利用Simulink对白噪声的相关特性进行了探究,共对5个小问题进行仿真实验,以期加深对白噪声的理解。
基于当正弦信号通过线性系统时,其频率保持不变,而相位发生改变这样的事实,在实验中我采用的是一个单一频率的正弦信号,其它频率信号的响应可以类似地得到。所用正弦信号的相关参数如下图所示:信号频率为1Hz,振幅为1。叠加的白噪声信号参数为:均值为0,方差为1,服从高斯分布。
图1-1a原始信号的参数
图1-1b白噪声信号的参数
考虑到白噪声“均值为零,功率谱密度在整个频率轴上有非零常数”,由于原信号是频率为1Hz的正弦信号,所以首先考虑用低通滤波器进行滤波,系统的完整结构图如下:
在上图中,右上角示波器的四个输入分别为原正弦信号、叠加了高斯白噪声的正弦信号、高斯白噪声以及通过滤波器之后的信号。
实现教程
- 平稳随机过程
代码程序:
%%%%%%%%%%%%随机平稳性实验%%%%%%%%%%%%%%
close all;
%%%%%%%%%获取wav文件%%%%%%%%%
[y,fs]=wavread('E:\xiaoyu.wav');
sound(y,fs);
time=(1:length(y))/fs;
plot(time,y);
axis(7 -22);
%%%%%%%%%%自相关分析%%%%%%%%%
Mlag=10;
y1=xcorr(y,Mlag,'biased');
figure(2);
stem(y1);
语音文件如下图:通过电脑声卡获取我的语音,并保存为WAV格式音频文件,通过MATLAB调用获取波形。
Wav文件获取:音频转换链接在线转换音频文件 (aconvert.com)
下图是语音信号自相关的波形,调用的是MATLAB信号处理工具箱的xcorr函数。
Mlag=10自相关
Mlag=60自相关
二、高斯随机信号
- 在communications system toolbox下找到noise generators,选择gaussian noise generator
2.建立新simulink页面,将gaussian noise generator拉入
3.运行看下效果
利用simulink 模拟的方法分析了随机信号通过LTI系统的具体过程:图1 是用MATLAB 的simulink 模拟白噪声通过图1 的RC 电路,用示波器观察输入和输出的波形,改变RC 的值,使电路时间常数改变,观察输出波形的变化。
图3 “带限白噪声”参数设定窗口
上述的带限白噪声模块中Seed 参数代表了随机数发生器初始化的状态,可以自行设定。下面为原理框图:
图4 实验框图
实验观察到的波形如下所示:
图5 原始白噪声信号
图8 高斯信号通过LTI系统框图
该实验仿真了高斯信号通过低通线性系统的过程,以及正弦信号加高斯信号通过低通线性系统的过程,实验结果如下图所示
图9 原始高斯信号
图11 正弦信号波形
图12 高斯加正弦信号
图13 高斯加正弦信号通过低通滤波器
通过观察系统输出信号的时域波形可以看出,低通LTI系统滤除了输入信号的高频成分。对低频正弦信号而言,高斯信号包含了大量的高频成分,他们叠加在一起表现为正弦信号附带显著的毛刺。将他们作为低通滤波器的输入信号,输出信号的毛刺得到了明显平滑,显现了滤波的功能。
2.1低通滤波
低通滤波器的参数如下:8阶Butterworth低通滤波器,截止频率2Hz
图2-1 低通滤波器参数
补充:滤波器的阶数
1阶Butterworth低通滤波器 2阶Butterworth低通滤波器 8阶Butterworth低通滤波器
2.1.1频域分析结果
图2-2a原正弦信号的功率谱密度函数 图2-2b白噪声的功率谱密度函数
图2-2c叠加后信号的功率谱密度函数 图2-2d滤波后信号的功率谱密度函数
2.1.2 时域分析
从上到下,依次为:原正弦信号、叠加了高斯白噪声的正弦信号、高斯白噪声以及低通滤波之后的信号。
从图上可以看出滤波之后的信号大致恢复了原来的信号,但可以较明显地看出在原来的正弦信号之上还叠加有低频信号,初步考虑之后认为,低通滤波器虽然滤除了信号的高频部分,但白噪声的功率谱密度在整个频率轴上都有非零常数,于是自然想到利用带通滤波器可以得到更好的滤波效果,以下为了简化,作图时只研究未加噪声的原始信号和滤波后的信号。
2.2带通滤波
带通滤波器的参数如下图所示:
图2-4 带通滤波器参数
图2-4 低通与带通滤波器结果对比
为了进行对比,这里给出低通滤波的放大结果。从图上可以直观地看出,带通滤波器的滤波效果优于低通滤波器,但其不足在于动态响应特性不如低通滤波器。
(1)白噪声通过线性系统的仿真和分析;
(2)高斯过程通过线性系统的仿真