Atcoder Bginner Contest 224E - Integers on Grid 解题报告
1 题目链接
2 题目大意
题目:网格上的整数
题目大意:
有一个
H
×
W
H\times W
H×W 的棋盘图。对于其中的
N
N
N 个坐标 (
X
i
X_i
Xi,
Y
i
Y_i
Yi ) 上有一些数
a
i
j
a_{ij}
aij,现可以从
N
N
N 中任一点跳到同行或同列的另一点上。
请输出
N
N
N 行数据,第
i
i
i 行为 从
i
i
i 开始跳最多的步数。
3 解法分析
不难联想到洛谷那一个滑雪的题目。
显然直接做并不最优,考虑用一些神奇的优化。
先总结一下做法。
- D P DP DP。
- 记忆化搜索。
鉴于本人未系统学习
D
P
DP
DP,本题保险起见使用记忆化搜索。
d
f
s
dfs
dfs 的朴素做法显然是
O
(
n
2
)
O(n ^2)
O(n2),然而
A
t
c
o
d
e
r
Atcoder
Atcoder 评测机再快也过不了
2
e
5
2e5
2e5(本人实测)。
考虑使用一个小小的 rmax
与 cmax
把一个
O
(
n
)
O(n)
O(n) 优化成
O
(
log
n
)
O(\log n)
O(logn)。
开一个 map <int, vector <int> >
用来存下每个高度对应的下标
i
i
i,而上行的优化用于记录第
i
i
i 行/列最大的
d
p
dp
dp 值。
变成水题。
注意倒序排序。
5 AC Code
#include <bits/stdc++.h>
#define rep(i, a, b) for (int (i) = (a); (i) <= (b); ++(i))
#define piv pair <int, vector <int> >
#define S second
#define N 200007
using namespace std;
int h, w, n;
int x[N], y[N], a[N];
int r[N], c[N], dp[N];
map <int, vector<int> > mp;
int main() {
scanf("%d%d%d", &h, &w, &n);
rep(i, 1, n) {
scanf("%d%d%d", &x[i], &y[i], &a[i]);
mp[-a[i]].push_back(i);
}
for (piv to : mp) {
for (int j : to.S)
dp[j] = max(r[x[j]], c[y[j]]);
for (int j : to.S) {
r[x[j]] = max(r[x[j]], dp[j] + 1);
c[y[j]] = max(c[y[j]], dp[j] + 1);
}
}
rep(i, 1, n)
printf("%d\n", dp[i]);
return 0;
}