Atcoder Bginner Contest 224E - Integers on Grid

本文是关于AtcoderBeginnerContest224E题目的解题报告,题目要求在H×W的棋盘上进行移动,从给定的N个坐标出发,计算能到达的最大步数。解法采用了记忆化搜索(DP)进行优化,通过rmax和cmax减少时间复杂度,将原本的O(n^2)优化到O(logn),并提供了AC代码。
摘要由CSDN通过智能技术生成

Atcoder Bginner Contest 224E - Integers on Grid 解题报告

1 题目链接

传送门

2 题目大意

题目:网格上的整数
题目大意:

有一个 H × W H\times W H×W 的棋盘图。对于其中的 N N N 个坐标 ( X i X_i Xi, Y i Y_i Yi ) 上有一些数 a i j a_{ij} aij,现可以从 N N N 中任一点跳到同行或同列的另一点上。
请输出 N N N 行数据,第 i i i 行为 从 i i i 开始跳最多的步数。

3 解法分析

不难联想到洛谷那一个滑雪的题目
显然直接做并不最优,考虑用一些神奇的优化。
先总结一下做法。

  1. D P DP DP
  2. 记忆化搜索。

鉴于本人未系统学习 D P DP DP,本题保险起见使用记忆化搜索。
d f s dfs dfs 的朴素做法显然是 O ( n 2 ) O(n ^2) O(n2),然而 A t c o d e r Atcoder Atcoder 评测机再快也过不了 2 e 5 2e5 2e5(本人实测)。
考虑使用一个小小的 rmaxcmax 把一个 O ( n ) O(n) O(n) 优化成 O ( log ⁡ n ) O(\log n) O(logn)
开一个 map <int, vector <int> > 用来存下每个高度对应的下标 i i i,而上行的优化用于记录第 i i i 行/列最大的 d p dp dp 值。
变成水题。
注意倒序排序。

5 AC Code

#include <bits/stdc++.h>
#define rep(i, a, b) for (int (i) = (a); (i) <= (b); ++(i))
#define piv pair <int, vector <int> >
#define S second
#define N 200007
using namespace std;

int h, w, n;
int x[N], y[N], a[N];
int r[N], c[N], dp[N];
map <int, vector<int> > mp;

int main() {
	scanf("%d%d%d", &h, &w, &n);
	rep(i, 1, n) {
		scanf("%d%d%d", &x[i], &y[i], &a[i]);
		mp[-a[i]].push_back(i); 
	}
	for (piv to : mp) {
		for (int j : to.S)
			dp[j] = max(r[x[j]], c[y[j]]);
		for (int j : to.S) {
			r[x[j]] = max(r[x[j]], dp[j] + 1);
			c[y[j]] = max(c[y[j]], dp[j] + 1);
		}
	}
	rep(i, 1, n)
		printf("%d\n", dp[i]);
	return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值