力扣2509-LCA

这篇博客分享了一位程序员在力扣周赛中的首次参赛经历,主要讨论了第2509题——查询树中环的长度。题目要求在完全二叉树中找到节点的最近公共祖先,并在添加边后计算环的长度。作者通过迭代方法找到了最近公共祖先,但提及可以使用倍增算法优化时间复杂度。博客内容侧重于算法和问题解决,适合对算法感兴趣的读者阅读。
摘要由CSDN通过智能技术生成

这是我第一次参加力扣周赛,只过了第一题,第三题直接卡过去的,但是后来力扣官方还是直接WA了,直接上链接:

这个题目是第四题!!

周赛链接:竞赛 - 力扣 (LeetCode)

第四题链接:力扣

题目:

2509. 查询树中环的长度

给你一个整数 n ,表示你有一棵含有 2n - 1 个节点的 完全二叉树 。根节点的编号是 1 ,树中编号在[1, 2n - 1 - 1] 之间,编号为 val 的节点都有两个子节点,满足:

  • 左子节点的编号为 2 * val
  • 右子节点的编号为 2 * val + 1

给你一个长度为 m 的查询数组 queries ,它是一个二维整数数组,其中 queries[i] = [ai, bi] 。对于每个查询,求出以下问题的解:

  1. 在节点编号为 ai 和 bi 之间添加一条边。
  2. 求出图中环的长度。
  3. 删除节点编号为 ai 和 bi 之间新添加的边。

注意:

  •  是开始和结束于同一节点的一条路径,路径中每条边都只会被访问一次。
  • 环的长度是环中边的数目。
  • 在树中添加额外的边后,两个点之间可能会有多条边。

请你返回一个长度为 m 的数组 answer ,其中 answer[i] 是第 i 个查询的结果

先直接上代码:

class Solution {
public:
    vector<int> cycleLengthQueries(int n, vector<vector<int>>& queries) {
        //最近公共祖先问题
        //题目已经明确是一个完全二叉树
        int t = queries.size();
        vector<int> w;
        for (int k = 0; k < t; k++) {
            int a = queries[k][0], b = queries[k][1]; //两个结点就是a and b
            int ans = 1;
            while (a != b) 
                a > b ? a = a / 2 : b = b / 2, ans++;   //a和b谁的数比较大,谁就除以2
                                                        //循环终止条件是a和b相等
            w.push_back(ans);
        }
        return w;
    }
};

其实题目的主要思想很简单,就是寻找这个完全二叉树的最近公共祖先。

最近公共祖先还可以用倍增的思想,时间复杂度会更好,但是不会😥😭。

若有错误或侵权,请指出,会积极改正。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值