目录
Redis的特点和使用场景
我们先来回顾下我们之前学过的MySQL
mysql的数据是存储到硬盘上的,他的读取速度比较慢,但是容量大
而Redis则是使用了内存,数据是在内存上,读取速度比较快,但是容量小。
这里补充一点:
我们一开始学习编程,所了解的变量是存储找内存中。那么既然都是存储到内存中,我们干嘛还要弄一个Redis呢?
是这样的——Redis主要是用在分布式系统上的,他可以实现各个进程间数据的通讯,共享,甚至不同主机上的进程间数据的互相访问
分布式系统的引入
单机系统
下面是一个单机架构,只有一台服务器,这个服务器负责处理所有的事情
我们之前写的java--web类项目,属于是HTTP服务器(处理前端发来的请求)
对与数据来说
我们上面所说的web程序,springboot属于是HTTP服务器(属于Mysql的客户端), 向Mysql服务器发生请求(查询数据)
而MySQL是一个客户端服务器结构的程序,是作为数据的服务器,他的本体就是Mysql服务器(用来存储和组织数据)
分布式系统
虽然对于现在的计算机硬件来说,哪怕只有一台主机,这一台主机也是可以支持非常高的并发 & 非常大的数据存储。
但是如果业务进一步增长,用户量和数据量继续增多,当一台主机难以应付的时候,就需要引入更多的主机,引入更多的硬件资源
一旦引入了多台主机,咱们的系统就可以称为是分布式系统
上面就是一个最简单的分布式的结构——应用服务和数据库服务分离
应用服务器的增多(处理更多的请求)
但是因为应用服务器可能会比较吃CPU和内存。
比如要同时要处理的应用请求过多,把CPU和内存给吃没了,就会出现相应的问题
这个时候,我们就需要引入更多的应用服务器,来解决上述问题
这里的应用服务器,可能是两个,也可能是多个。用户的请求先到达负载均衡器/网关服务器,将任务分配给下面的多个应用服务器
这里我们介绍下负载均衡器
负载均衡器的请求承受能力,大大高于应用服务器。(负载均衡服务器主要用于任务的分配,分配任务一般不会消耗太多的资源,任务的执行——也就是应用服务器消耗的资源会多一些)
当然如果系统的请求实在太多,负载均衡器的压力也过大的时候,我们这里可以引入更多的负载均衡服务器来承受这增多的访问量
这里需要注意的是,当我们的服务器增多了后,管理成本也会变高,系统也变得越来越复杂,出现问题的概率也随之提升
数据库读写分离(数据服务器的增多)
这里面有一个主从结构
在实际应用场景中,读的频率是比写的频率要高的
那么我们就可以有多个从服务器——一主多从
引入缓存
数据库天然有一个问题,相应速度是相对更慢的
为了解决这个问题,我们可以把数据区分 ”冷热“, 热点数据(使用频繁的数据)放到缓存中,缓存的访问速度往往要比数据库要快很多!!!
我们的redis主要就是应用在缓存中,虽然存的数据少,但速度快(存的也都是热点数据)
另外因为二八原则, 缓存服务器中的热点数据可以应对80%以上的请求。因此缓存服务器的使用,不仅提高了访问速度,还缓解了其他数据服务器的压力。
虽然引入缓存这样的好处,但同时也会带来一些问题,比如数据一致性(数据同步)问题。
应对更大的数据量
我们上面不管是引入更多的应用服务器,还是数据库读写分离、引入缓存,都是为了应对更高的请求量。但是对于一个完善的系统来说我们不光要能够去应对更高的请求量,也还要能够应对更大的数据量
业务拆分:微服务
随着⼈员增加,业务发展,我们将业务分给不同的开发团队去维护,每个团队独⽴实现⾃⼰的微服务,然后互相之间对数据的直接访问进⾏隔离,可以利⽤Gateway、消息总线等技术,实现相互之间的调⽤关联。甚⾄可以把⼀些类似⽤⼾管理、安全管理、数据采集等业务提成公共服务