💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
非法野生动物贸易对我们的环境造成了负面影响,并威胁全球生物多样性。据估计,这种贸易每年涉及高达265亿美元,并被认为是全球第四大非法交易。[1] 您需要制定一个基于数据的为期5年的项目,旨在显著减少非法野生动物贸易。您的目标是说服一个客户执行您的项目。为此,您必须选择一个客户,并为该客户选择一个合适的项目。您的工作应该探讨以下子问题:
● 谁是您的客户?该客户实际上能做什么?(换句话说,您的客户应该具有实施您提出的项目所需的权力、资源和兴趣。)
● 解释您开发的项目为什么适合这个客户。从已发表的文献和您自己的分析中,支持您选择的拟议项目的研究是什么?通过基于数据的分析,您将如何说服您的客户执行这个项目?
● 您的客户需要哪些额外的权力和资源来执行这个项目?(请记住使用假设,但尽可能将您的工作放在现实中。)
● 如果项目得以实施,会发生什么?换句话说,非法野生动物贸易的可衡量影响将是什么?您进行了什么分析来确定这一点?
● 项目达到预期目标的可能性有多大?另外,基于情境敏感性分析,是否有可能会不成比例地促进或损害项目实现目标的条件或事件?
虽然您可以将您的方法限制在非法野生动物贸易领域,但您也可以将非法野生动物贸易作为一个更大复杂系统的一部分。具体来说,您可以考虑其他领域的全球努力,例如遏制其他形式的非法交易或减少气候变化的努力,再加上遏制非法野生动物贸易的努力,可能是一个复杂系统的一部分。这可能为该领域中意想不到的参与者创造协同机会。
如果您选择在解决方案中利用复杂性框架,请务必通过讨论这种建模决策的好处和缺点来证明您的选择。另外,您的团队必须提交一份1页备忘录,重点介绍您的5年项目提案,以及为什么该项目适合他们作为客户(例如,可以访问资源、符合他们的任务、与他们的使命陈述一致等)。
评委会将特别关注您在选择客户和选择以及证明整个分析过程中使用的适当建模过程的创造性。他们还将寻求既(1)建立客户和拟议项目之间的牢固联系,又(2)在数据分析和拟议项目设计之间建立清晰直接的联系的表达。
您的PDF解决方案总页数不得超过25页,应包括:
• 一页摘要表,清楚描述您解决问题的方法以及您在问题的背景下的最重要结论。
• 目录。
• 您的完整解决方案。
• 一份针对您的客户的1页备忘录。
• 参考文献清单。
• AI使用报告(如果使用)。
注意:完整ICM提交没有特定的最低页数要求。您可以使用最多25页来展示您的解决方案工作和您想要包含的任何额外信息(例如:图纸、图表、计算、表格)。我们接受部分解决方案。我们允许谨慎地使用AI,比如ChatGPT,尽管使用AI并不是解决这个问题的必要条件。如果您选择利用生成式AI,您必须遵守COMAP的AI使用政策。这将导致您必须将额外的AI使用报告添加到您的PDF解决方案文件的末尾,并且不计入解决方案的25页总限制。
术语表
客户:将实施提议项目的行动者。他们可能是官方行动者(政府或准政府机构)或非官方行动者(非政府组织)。
非法野生动物贸易:走私、偷猎、捕捉或收集濒危物种、受保护的野生动物或这些物种的衍生产品。
| ©2024 COMAP公司 | www.comap.org | www.mathmodels.org | info@comap.org | v102023
在COMAP比赛中使用大型语言模型和生成式人工智能工具
本政策是受到大型语言模型(LLMs)和生成式人工智能辅助技术的兴起而制定的。该政策旨在为团队、顾问和评委提供更大的透明度和指导。该政策适用于学生工作的各个方面,从模型的研究和开发(包括代码编写)到书面报告。由于这些新兴技术正在迅速发展,COMAP将根据需要完善本政策。
团队必须对他们所有的人工智能工具使用进行公开和诚实的披露。团队和其提交的透明度越高,其工作就越有可能被他人充分信任、赞赏和正确使用。这些披露有助于理解知识作品的发展,并对贡献进行适当的认可。如果没有对人工智能工具的作用进行公开和清晰的引用和参考,那么可能会有更多可疑的段落和工作被认定为剽窃并被取消资格。
解决问题并不需要使用人工智能工具,尽管允许其负责任地使用。COMAP认识到LLMs和生成式人工智能作为提高团队准备提交材料的生产力工具的价值;例如,它们可以帮助生成初步的结构构想,或者在总结、改写、语言润色等方面提供帮助。在模型开发中有许多任务需要人类的创造力和团队合作,而依赖人工智能工具会带来风险。因此,在使用这些技术进行模型选择和构建、辅助代码编写、解释数据和模型结果以及得出科学结论时,我们建议谨慎使用。
重要的是要注意,LLMs和生成式人工智能存在局限性,无法取代人类的创造力和批判性思维。如果团队选择使用LLMs,COMAP建议他们注意以下风险:
• 客观性:LLM生成的文本可能包含种族主义、性别歧视或其他偏见的内容,有时可能无法代表某些重要观点。
• 准确性:LLMs可能会“产生幻觉”,即生成虚假内容,尤其是在超出其领域范围或处理复杂或模糊主题时。它们可能生成在语言上合理但在科学上不合理的内容,可能出错,已有研究表明它们可能生成不存在的引用。有些LLMs只是在特定日期之前发布的内容上进行训练,因此呈现出不完整的画面。
• 上下文理解:LLMs无法将人类理解应用于文本的上下文,尤其是在处理习语表达、讽刺、幽默或比喻性语言时。这可能导致生成内容中的错误或误解。
• 训练数据:LLMs需要大量高质量的训练数据才能实现最佳性能。然而,在某些领域或语言中,这样的数据可能不容易获取,从而限制了输出的有用性。
📚2 原题及数据下载
链接:https://pan.baidu.com/s/1dSKvO7BJody7okXh6okooQ
提取码:u75e
--来自百度网盘超级会员V5的分享
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
References
[1] Wildlife Conservancy Society. (2021). Why Should we Care about Wildlife Trafficking?
Retrieved from https://wildlifetrade.wcs.org/Wildlife-Trade/Why-should-we-care.asp
🌈4 思路、代码持续更新中.....
回复:美赛F题