👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
摘要:住宅空调负荷(ACL)是一种有前途的需求响应(DR)资源,具有一定的灵活性和可控性,可以提高电网的运行灵活性和资源利用率。灾难恢复潜力评估对于估计功率降低和确定合适的灾难恢复客户非常重要。为了更好地揭示灾难恢复过程中的多方面因素和多重不确定性,本文提出了一种新的定义和评估方法,用于从单个客户到大规模地区的运营灾难恢复潜力。为了解决两个主要的评估问题:ACLs提取和参数估计,提出了一种考虑负荷水平差异和季节变化的无监督负荷分解方法,将全屋能耗分解为ACLs和基本负荷分量,随后,基于ACL的热动力学模型,开发了用于静态和动态模型参数估计的分段分析方法。对所提出的方法进行了深入的实施,以分析ACL的消费行为,并针对不同时间尺度的DR计划以经济高效的方式瞄准客户。
本文首先评估单一客户的空调可控潜力,进而发展为大规模地区的空调的需求响应潜力以及规模的评估。采用静态和动态模型参数估计的分段分析方法,深入分析了空调负荷的消费行为,并针对不同时间尺度的需求响应问题,以成本效益为目标,优化空调负荷的需求响应行为。最后以实际的算例数据,验证了所提出方法的准确性和鲁棒性。文献基于德克萨斯州奥斯汀市119个居民客户的地面真实数据进行的数据实验验证了所提出的方法具有更好的准确性和鲁棒性。这些结果还表明,ACL使用模式(共19种模式)和灾难恢复潜力(最大3.2 kW)的巨大差异来自不同的灾难恢复持续时间和运营条件,这表明政策和计划应参考不同灾难恢复场景中灾难恢复客户目标和参与者选择的5个基本指标。
基于数据驱动的智能空调系统需求响应可控潜力评估研究
一、研究背景与核心概念
智能空调系统作为现代建筑与车辆环境控制的核心设备,其功能特性与需求响应(Demand Response, DR)机制的结合具有显著的节能与电网调节潜力。智能空调通过传感器网络、物联网(IoT)和人工智能算法实现多维环境参数的实时感知与动态调节,例如温度(±0.5℃精度)、湿度(±3%RH范围)和空气质量(PM2.5/CO₂监测)等。这种精细化控制能力使其成为电力需求侧管理的重要柔性负荷资源。
需求响应(DR)被定义为用户基于价格信号或激励措施调整用电行为的机制,分为基于价格的DR(如分时电价、实时电价)和基于激励的DR(如负荷直接控制、可中断负荷)。智能空调的DR可控潜力评估需量化其在电网峰谷调节、紧急负荷削减等场景下的可调度能力。
二、智能空调的DR关联功能与技术基础
-
核心功能支持DR的可行性
- 远程控制与自动化调节:通过APP实现远程开关机、模式切换(制冷/制热/除湿)及能耗监测,为聚合商提供集中调控接口。
- 动态负荷调整:基于气象联动(如温湿度预测)和用户习惯学习(如睡眠曲线),空调可预调节运行参数,减少DR事件对舒适度的影响。
- 能效优化算法:采用模糊逻辑、神经网络等智能控制算法,在保证热舒适度的前提下最小化能耗,例如通过PID控制优化压缩机启停周期。
-
数据驱动的运行参数建模
智能空调的DR潜力评估需建立其热力学模型与用户行为模型:- 热力学模型:基于房间热容、空调能效比(COP)和室外温度,推导负荷调节的物理边界。
- 用户行为模型:通过历史数据挖掘用户使用模式(如设定温度偏好、启停时段),量化DR策略的接受度。
三、可控潜力评估的关键指标与方法论
-
量化评估指标体系
指标类别 具体指标 定义与计算方法 数据来源 技术潜力 最大可削减负荷(kW) 空调满负荷运行时的功率 × 可调节时间比例 设备参数+历史运行数据 经济潜力 成本效益比(CBR) (DR收益 - 用户补偿成本)/实施成本 电价数据+用户调研 行为潜力 用户参与率(%) 参与DR事件的用户数 / 总用户数 问卷调查+聚合商数据 电网效益 负荷峰谷差削减量(MW) 基线负荷峰值 - DR后负荷峰值 电网调度数据 -
数据驱动评估方法
- 负荷分解技术:采用无监督学习(如NILM算法)从总能耗中分离空调负荷,识别基础负荷与可调负荷。
- 动态参数估计:分段分析空调的静态参数(如热阻)与动态参数(如用户设定温度变化率),构建响应潜力曲线。
- 机器学习预测:利用LSTM、随机森林等算法预测DR事件期间的负荷削减潜力,结合气象与用户行为特征优化预测精度。
四、典型案例与研究成果
-
单一用户评估
德克萨斯州奥斯汀市的研究表明,居民空调的DR潜力可达3.2 kW(单户),且受DR持续时间与室外温度影响显著。通过聚类分析发现19种典型使用模式,其中高响应潜力用户集中于设定温度波动较大的群体。 -
区域级聚合评估
中国A市工业用户评估显示,钢铁与化工行业的DR潜力占比超过60%,通过提高激励补贴可额外释放15%的调节容量。该研究结合层次分析法(AHP)与CRITIC法,构建了涵盖负荷特性、经济性等维度的综合评价模型。 -
数据驱动工具应用
- 格力电器大数据平台:基于PB级运行数据,分析地暖与空调的联动调节潜力,优化供水温度与热泵运行时段,实现节能20%以上。
- TCL小蓝翼系统:通过AI算法实现新风、语音控制与DR的协同,在保证PM2.5≤35μg/m³的条件下降低峰值负荷10%-15%。
五、挑战与未来方向
-
技术瓶颈
- 数据异构性:多源数据(传感器、用户APP、电网)的融合与标准化仍需突破。
- 模型泛化能力:不同气候区与建筑类型的空调DR潜力差异显著,需开发自适应迁移学习框架。
-
政策与市场机制
- 补偿机制设计:动态定价与用户满意度的平衡仍需探索,例如采用博弈论优化聚合商与用户间的利益分配。
- 跨系统协同:智能空调与光伏、储能的协同调度可提升整体能效,但需解决多主体协调与控制权分配问题。
-
前沿技术融合
- 数字孪生技术:构建空调系统的虚拟映射,实时模拟DR策略效果。
- 区块链应用:通过智能合约实现DR交易的透明化与自动化。
六、结论
基于数据驱动的智能空调DR潜力评估是提升电力系统灵活性与能效的关键路径。通过整合热力学建模、用户行为分析与机器学习预测,可精确量化空调的可控潜力,并为负荷聚合商与电网运营商提供决策支持。未来需进一步突破数据融合、跨系统协同与市场化机制设计,以实现DR资源的高效利用与可持续发展。
📚2 运行结果
部分代码:
figure(7)
set(gcf,'unit','centimeters','position',[0,0,16,12])
plot([temp3weekday;temp3weekend],[P3baseloadweekday;P3baseloadweekend],'o','MarkerSize',2);
set(gca,'FontName','Times New Roman','FontSize',10.5)
xlabel('\fontsize{10.5}\fontname{Times new roman}Outdoor Temperature (℉)')
ylabel('\fontsize{10.5}\fontname{Times new roman}Load Power (kW)')
figure(8)
set(gcf,'unit','centimeters','position',[0,0,16,12])
plot(mean(P3baseloadweekdaytrue),'k-.','LineWidth',1)
hold on
plot(mean(P3baseloadweekendtrue),'b-.','LineWidth',1)
hold on
plot(mean(P3baseloadweekday),'k-','LineWidth',2)
hold on
plot(mean(P3baseloadweekend),'b-','LineWidth',2)
hold on
set(gca,'FontName','Times New Roman','FontSize',10.5)
xlabel('\fontsize{10.5}\fontname{Times new roman}Time (h)')
ylabel('\fontsize{10.5}\fontname{Times new roman}Load Power (kW)')
%% clustering of April
Pcluster=P4;
temp4=T4;
[idx,C,sumD]=kmeans(Pcluster,4);
[Y,I]=sort(mean(C'));
P4baseloadweekday=Pcluster(find(idx==I(1)),:);
P4baseloadweekend=Pcluster(find(idx==I(3)),:);
P4otherweekday=Pcluster(find(idx==I(2)),:);
P4otherweekend=Pcluster(find(idx==I(4)),:);
cluster4=zeros(size(idx,1),1);
cluster4(find(idx==I(1)),1)=1;
cluster4(find(idx==I(3)),1)=2;
cluster_4=zeros(size(idx,1),1);
cluster_4([find(idx==I(1));find(idx==I(3))],1)=1;
P4baseloadweekdaytrue=baseload4(find(idx==I(1)),:);
P4baseloadweekendtrue=baseload4(find(idx==I(4)),:);
weekday4=[find(idx==I(1));find(idx==I(2))];
weekend4=[find(idx==I(3));find(idx==I(3))];
temp4weekday=temp4(find(idx==I(1)),:);
temp4weekend=temp4(find(idx==I(3)),:);
temp4otherweekday=temp4(find(idx==I(2)),:);
temp4otherweekend=temp4(find(idx==I(4)),:);
figure(7)
set(gcf,'unit','centimeters','position',[0,0,16,12])
plot([temp3weekday;temp3weekend],[P3baseloadweekday;P3baseloadweekend],'o','MarkerSize',2);
set(gca,'FontName','Times New Roman','FontSize',10.5)
xlabel('\fontsize{10.5}\fontname{Times new roman}Outdoor Temperature (℉)')
ylabel('\fontsize{10.5}\fontname{Times new roman}Load Power (kW)')
%% weekday correction
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。