深度学习知识点

深度学习详细笔记

目录

预备知识

线性神经网络

多层感知机

深度学习计算

卷积神经网络

现代卷积神经网络(需要再去看论文)

循环神经网络(需要再去看论文)

注意力机制

优化算法

预训练


预备知识

  1. 深度学习存储和操作数据的主要接口是张量(n维数组)。它提供了各种功能,包括基本数学运算、广播、索引、切片、内存节省和转换其他Python对象。
  2. pandas软件包是Python中常用的数据分析工具中,pandas可以与张量兼容。
  3. 用pandas处理缺失的数据时,我们可根据情况选择用插值法和删除法。
  4. 标量、向量、矩阵和张量是线性代数中的基本数学对象。
  5. 向量泛化自标量,矩阵泛化自向量。
  6. 标量、向量、矩阵和张量分别具有零、一、二和任意数量的轴
  7. 一个张量可以通过sum和mean沿指定的轴降低维度。
  8. 两个矩阵的按元素乘法被称为他们的Hadamard积。它与矩阵乘法不同。
  9. 在深度学习中,我们经常使用范数,如范数、范数和Frobenius范数。
  10. 我们可以对标量、向量、矩阵和张量执行各种操作。
  11. 微分和积分是微积分的两个分支,前者可以应用于深度学习中的优化问题。
  12. 导数可以被解释为函数相对于其变量的瞬时变化率,它也是函数曲线的切线的斜率。
  13. 梯度是一个向量,其分量是多变量函数相对于其所有变量的偏导数。
  14. 链式法则使我们能够微分复合函数。
  15. 深度学习框架可以自动计算导数:我们首先将梯度附加到想要对其计算偏导数的变量上。然后我们记录目标值的计算,执行它的反向传播函数,并访问得到的梯度。
  16. 我们可以从概率分布中采样。
  17. 我们可以使用联合分布、条件分布、Bayes定理、边缘化和独立性假设来分析多个随机变量。
  18. 期望和方差为概率分布的关键特征的概括提供了实用的度量形式。
  19. 我们可以通过调用dir和help函数或在Jupyter记事本中使用?和??查看API的用法文档。

线性神经网络

  1. 机器学习模型中的关键要素是训练数据、损失函数、优化算法,还有模型本身。
  2. 矢量化使数学表达上更简洁,同时运行的更快。
  3. 最小化目标函数和执行极大似然估计等价。
  4. 线性回归模型也是一个简单的神经网络。
  5. 我们学习了深度网络是如何实现和优化的。在这一过程中只使用张量和自动微分,不需要定义层或复杂的优化器。
  6. 这一节只触及到了表面知识。在下面的部分中,我们将基于刚刚介绍的概念描述其他模型,并学习如何更简洁地实现其他模型。
  7. 我们可以使用PyTorch的高级API更简洁地实现模型。
  8. 在PyTorch中,data模块提供了数据处理工具,nn模块定义了大量的神经网络层和常见损失函数。
  9. 我们可以通过_结尾的方法将参数替换,从而初始化参数。
  10. softmax运算获取一个向量并将其映射为概率。
  11. softmax回归适用于分类问题,它使用了softmax运算中输出类别的概率分布。
  12. 交叉熵是一个衡量两个概率分布之间差异的很好的度量,它测量给定模型编码数据所需的比特数。
  13. Fashion-MNIST是一个服装分类数据集,由10个类别的图像组成。我们将在后续章节中使用此数据集来评估各种分类算法。
  14. 我们将高度h像素,宽度w像素图像的形状记为h x w或(h,w)。
  15. 数据迭代器是获得更高性能的关键组件。依靠实现良好的数据迭代器,利用高性能计算来避免减慢训练过程。(batch)
  16. 借助softmax回归,我们可以训练多分类的模型。
  17. 训练softmax回归循环模型与训练线性回归模型非常相似:先读取数据,再定义模型和损失函数,然后使用优化算法训练模型。大多数常见的深度学习模型都有类似的训练过程。
  18. 使用深度学习框架的高级API,我们可以更简洁地实现softmax回归。
  19. 从计算的角度来看,实现softmax回归比较复杂。在许多情况下,深度学习框架在这些著名的技巧之外采取了额外的预防措施,来确保数值的稳定性。这使我们避免了在实践中从零开始编写模型时可能遇到的陷阱。

多层感知机

  1. 多层感知机在输出层和输入层之间增加一个或多个全连接隐藏层,并通过激活函数转换隐藏层的输出。
  2. 常用的激活函数包括ReLU函数、sigmoid函数和tanh函数。
  3. 手动实现一个简单的多层感知机是很容易的。然而如果有大量的层,从零开始实现多层感知机会变得很麻烦(例如,要命名和记录模型的参数)。
  4. 我们可以使用高级API更简洁地实现多层感知机。
  5. 对于相同的分类问题,多层感知机的实现与softmax回归的实现相同,只是多层感知机的实现里增加了带有激活函数的隐藏层。
  6. 欠拟合是指模型无法继续减少训练误差。过拟合是指训练误差远小于验证误差。
  7. 由于不能基于训练误差来估计泛化误差,因此简单地最小化训练误差并不一定意味着泛化误差的减小。机器学习模型需要注意防止过拟合,即防止泛化误差过大。
  8. 验证集可以用于模型选择,但不能过于随意地使用它。
  9. 我们应该选择一个复杂度适当的模型,避免使用数量不足的训练样本。
  10. 正则化是处理过拟合的常用方法:在训练集的损失函数中加入惩罚项,以降低学习到的模型的复杂度。
  11. 保持模型简单的一个特别的选择是使用惩罚的权重衰减。这会导致学习算法更新步骤中的权重衰减。
  12. 权重衰减功能在深度学习框架的优化器中提供。
  13. 在同一训练代码实现中,不同的参数集可以有不同的更新行为。
  14. 暂退法在前向传播过程中,计算每一内部层的同时丢弃一些神经元。
  15. 暂退法可以避免过拟合,它通常与控制权重向量的维数和大小结合使用的。
  16. 暂退法将活性值h替换为具有期望值h的随机变量。
  17. 暂退法仅在训练期间使用。
  18. 前向传播在神经网络定义的计算图中按顺序计算和存储中间变量,它的顺序是从输入层到输出层。
  19. 反向传播按相反的顺序(从输出层到输入层)计算和存储神经网络的中间变量和参数的梯度。
  20. 在训练深度学习模型时,前向传播和反向传播是相互依赖的。
  21. 训练比预测需要更多的内存。
  22. 梯度消失和梯度爆炸是深度网络中常见的问题。在参数初始化时需要非常小心,以确保梯度和参数可以得到很好的控制。
  23. 需要用启发式的初始化方法来确保初始梯度既不太大也不太小。
  24. ReLU激活函数缓解了梯度消失问题,这样可以加速收敛。
  25. 随机初始化是保证在进行优化前打破对称性的关键。
  26. Xavier初始化表明,对于每一层,输出的方差不受输入数量的影响,任何梯度的方差不受输出数量的影响。
  27. 在许多情况下,训练集和测试集并不来自同一个分布。这就是所谓的分布偏移。
  28. 真实风险是从真实分布中抽取的所有数据的总体损失的预期。然而,这个数据总体通常是无法获得的。经验风险是训练数据的平均损失,用于近似真实风险。在实践中,我们进行经验风险最小化。
  29. 在相应的假设条件下,可以在测试时检测并纠正协变量偏移和标签偏移。在测试时,不考虑这种偏移可能会成为问题。
  30. 在某些情况下,环境可能会记住自动操作并以令人惊讶的方式做出响应。在构建模型时,我们必须考虑到这种可能性,并继续监控实时系统,并对我们的模型和环境以意想不到的方式纠缠在一起的可能性持开放态度。
  31. 真实数据通常混合了不同的数据类型,需要进行预处理。
  32. 常用的预处理方法:将实值数据重新缩放为零均值和单位方法(标准正态分布);用均值替换缺失值。
  33. 将类别特征转化为指标特征,可以使我们把这个特征当作一个独热向量来对待。
  34. 我们可以使用K折交叉验证来选择模型并调整超参数。
  35. 对数对于相对误差很有用。

深度学习计算

  1. 一个块可以由许多层组成;一个块可以由许多块组成。
  2. 块可以包含代码。
  3. 块负责大量的内部处理,包括参数初始化和反向传播。
  4. 层和块的顺序连接由Sequential块处理。
  5. 我们有几种方法可以访问、初始化和绑定模型参数。
  6. 我们可以使用自定义初始化方法。
  7. 延后初始化使框架能够自动推断参数形状,使修改模型架构变得容易,避免了一些常见的错误。
  8. 我们可以通过模型传递数据,使框架最终初始化参数。
  9. 我们可以通过基本层类设计自定义层。这允许我们定义灵活的新层,其行为与深度学习框架中的任何现有层不同。
  10. 在自定义层定义完成后,我们就可以在任意环境和网络架构中调用该自定义层。
  11. 层可以有局部参数,这些参数可以通过内置函数创建。
  12. save和load函数可用于张量对象的文件读写。
  13. 我们可以通过参数字典保存和加载网络的全部参数。
  14. 保存架构必须在代码中完成,而不是在参数中完成。
  15. 我们可以指定用于存储和计算的设备,例如CPU或GPU。默认情况下,数据在主内存中创建,然后使用CPU进行计算。
  16. 深度学习框架要求计算的所有输入数据都在同一设备上,无论是CPU还是GPU
  17. 我们可以指定用于存储和计算的设备,例如CPU或GPU。默认情况下,数据在主内存中创建,然后使用CPU进行计算。
  18. 深度学习框架要求计算的所有输入数据都在同一设备上,无论是CPU还是GPU。
  19. 不经意地移动数据可能会显著降低性能。一个典型的错误如下:计算GPU上每个小批量的损失,并在命令行中将其报告给用户(或将其记录在NumPy ndarray中)时,将触发全局解释器锁,从而使所有GPU阻塞。最好是为GPU内部的日志分配内存,并且只移动较大的日志。

卷积神经网络

  1. 图像的平移不变性使我们以相同的方式处理局部图像,而不在乎它的位置。
  2. 局部性意味着计算相应的隐藏表示只需一小部分局部图像像素。
  3. 在图像处理中,卷积层通常比全连接层需要更少的参数,但依旧获得高效用的模型。
  4. 卷积神经网络(CNN)是一类特殊的神经网络,它可以包含多个卷积层。
  5. 多个输入和输出通道使模型在每个空间位置可以获取图像的多方面特征。
  6. 二维卷积层的核心计算是二维互相关运算。最简单的形式是,对二维输入数据和卷积核执行互相关操作,然后添加一个偏置。
  7. 我们可以设计一个卷积核来检测图像的边缘。
  8. 我们可以从数据中学习卷积核的参数。
  9. 学习卷积核时,无论用严格卷积运算或互相关运算,卷积层的输出不会受太大影响。
  10. 当需要检测输入特征中更广区域时,我们可以构建一个更深的卷积网络。
  11. 填充可以增加输出的高度和宽度。这常用来使输出与输入具有相同的高和宽。
  12. 步幅可以减小输出的高和宽,例如输出的高和宽仅为输入的高和宽的1/n(n是一个大于1的整数)。
  13. 填充和步幅可用于有效地调整数据的维度。
  14. 多输入多输出通道可以用来扩展卷积层的模型。
  15. 当以每像素为基础应用时,1x1卷积层相当于全连接层。
  16. 1x1卷积层通常用于调整网络层的通道数量和控制模型复杂性。
  17. 对于给定输入元素,最大汇聚层(池化)会输出该窗口内的最大值,平均汇聚层会输出该窗口内的平均值。
  18. 汇聚层的主要优点之一是减轻卷积层对位置的过度敏感。
  19. 我们可以指定汇聚层的填充和步幅。
  20. 使用最大汇聚层以及大于1的步幅,可减少空间维度(如高度和宽度)。
  21. 汇聚层的输出通道数与输入通道数相同。
  22. 卷积神经网络(CNN)是一类使用卷积层的网络。
  23. 在卷积神经网络中,我们组合使用卷积层、非线性激活函数和汇聚层。
  24. 为了构造高性能的卷积神经网络,我们通常对卷积层进行排列,逐渐降低其表示的空间分辨率,同时增加通道数。
  25. 在传统的卷积神经网络中,卷积块编码得到的表征在输出之前需由一个或多个全连接层进行处理。
  26. LeNet是最早发布的卷积神经网络之一。

现代卷积神经网络(需要再去看论文)

  1. AlexNet。它是第一个在大规模视觉竞赛中击败传统计算机视觉模型的大型神经网络;
  2. 使用重复块的网络(VGG)。它利用许多重复的神经网络块;
  3. 网络中的网络(NiN)。它重复使用由卷积层和卷积层(用来代替全连接层)来构建深层网络;
  4. 含并行连结的网络(GoogLeNet)。它使用并行连结的网络,通过不同窗口大小的卷积层和最大汇聚层来并行抽取信息;
  5. 残差网络(ResNet)。它通过残差块构建跨层的数据通道,是计算机视觉中最流行的体系架构;
  6. 稠密连接网络(DenseNet)。它的计算成本很高,但给我们带来了更好的效果。

循环神经网络(需要再去看论文)

注意力机制

  1. 人类的注意力是有限的、有价值和稀缺的资源。
  2. 受试者使用非自主性和自主性提示有选择性地引导注意力。前者基于突出性,后者则依赖于意识。
  3. 注意力机制与全连接层或者汇聚层的区别源于增加的自主提示。
  4. 由于包含了自主性提示,注意力机制与全连接的层或汇聚层不同。
  5. 注意力机制通过注意力汇聚使选择偏向于值(感官输入),其中包含查询(自主性提示)和键(非自主性提示)。键和值是成对的。
  6. 我们可以可视化查询和键之间的注意力权重。
  7. Nadaraya-Watson核回归是具有注意力机制的机器学习范例。
  8. Nadaraya-Watson核回归的注意力汇聚是对训练数据中输出的加权平均。从注意力的角度来看,分配给每个值的注意力权重取决于将值所对应的键和查询作为输入的函数。
  9. 注意力汇聚可以分为非参数型和带参数型。
  10. 将注意力汇聚的输出计算可以作为值的加权平均,选择不同的注意力评分函数会带来不同的注意力汇聚操作。
  11. 当查询和键是不同长度的矢量时,可以使用可加性注意力评分函数。当它们的长度相同时,使用缩放的“点-积”注意力评分函数的计算效率更高。
  12. 多头注意力融合了来自于多个注意力汇聚的不同知识,这些知识的不同来源于相同的查询、键和值的不同的子空间表示。
  13. 基于适当的张量操作,可以实现多头注意力的并行计算。

 

 

  1. 在自注意力中,查询、键和值都来自同一组输入。
  2. 卷积神经网络和自注意力都拥有并行计算的优势,而且自注意力的最大路径长度最短。但是因为其计算复杂度是关于序列长度的二次方,所以在很长的序列中计算会非常慢。
  3. 为了使用序列的顺序信息,我们可以通过在输入表示中添加位置编码,来注入绝对的或相对的位置信息。
  4. transformer是编码器-解码器架构的一个实践,尽管在实际情况中编码器或解码器可以单独使用。
  5. 在transformer中,多头自注意力用于表示输入序列和输出序列,不过解码器必须通过掩蔽机制来保留自回归属性。
  6. transformer中的残差连接和层规范化是训练非常深度模型的重要工具。
  7. transformer模型中基于位置的前馈网络使用同一个多层感知机,作用是对所有序列位置的表示进行转换。

 

优化算法

  1. 最小化训练误差并不能保证我们找到最佳的参数集来最小化泛化误差。
  2. 优化问题可能有许多局部最小值。
  3. 问题可能有更多的鞍点,因为通常问题不是凸的。
  4. 梯度消失可能会导致优化停滞,重参数化通常会有所帮助。对参数进行良好的初始化也可能是有益的。
  5. 学习率的大小很重要:学习率太大会使模型发散,学习率太小会没有进展。
  6. 梯度下降会可能陷入局部极小值,而得不到全局最小值。
  7. 在高维模型中,调整学习率是很复杂的。
  8. 预处理有助于调节比例。
  9. 牛顿法在凸问题中一旦开始正常工作,速度就会快得多。
  10. 对于非凸问题,不要不作任何调整就使用牛顿法。
  11. 对于凸问题,我们可以证明,对于广泛的学习率选择,随机梯度下降将收敛到最优解。
  12. 对于深度学习而言,情况通常并非如此。但是,对凸问题的分析使我们能够深入了解如何进行优化,即逐步降低学习率,尽管不是太快。
  13. 如果学习率太小或太大,就会出现问题。实际上,通常只有经过多次实验后才能找到合适的学习率。
  14. 当训练数据集中有更多样本时,计算梯度下降的每次迭代的代价更高,因此在这些情况下,首选随机梯度下降。
  15. 随机梯度下降的最优性保证在非凸情况下一般不可用,因为需要检查的局部最小值的数量可能是指数级的。
  16. 由于减少了深度学习框架的额外开销,使用更好的内存定位以及CPU和GPU上的缓存,向量化使代码更加高效。
  17. 随机梯度下降的“统计效率”与大批量一次处理数据的“计算效率”之间存在权衡。小批量随机梯度下降提供了两全其美的答案:计算和统计效率。
  18. 在小批量随机梯度下降中,我们处理通过训练数据的随机排列获得的批量数据(即每个观测值只处理一次,但按随机顺序)。
  19. 在训练期间降低学习率有助于训练。
  20. 一般来说,小批量随机梯度下降比随机梯度下降和梯度下降的速度快,收敛风险较小。
  21. 动量法用过去梯度的平均值来替换梯度,这大大加快了收敛速度。
  22. 对于无噪声梯度下降和嘈杂随机梯度下降,动量法都是可取的。
  23. 动量法可以防止在随机梯度下降的优化过程停滞的问题。
  24. 由于对过去的数据进行了指数降权,有效梯度数为
  25. 在凸二次问题中,可以对动量法进行明确而详细的分析。
  26. 动量法的实现非常简单,但它需要我们存储额外的状态向量(动量)。
  27. AdaGrad算法会在单个坐标层面动态降低学习率。
  28. AdaGrad算法利用梯度的大小作为调整进度速率的手段:用较小的学习率来补偿带有较大梯度的坐标。
  29. 在深度学习问题中,由于内存和计算限制,计算准确的二阶导数通常是不可行的。梯度可以作为一个有效的代理。
  30. 如果优化问题的结构相当不均匀,AdaGrad算法可以帮助缓解扭曲。
  31. AdaGrad算法对于稀疏特征特别有效,在此情况下由于不常出现的问题,学习率需要更慢地降低。
  32. 在深度学习问题上,AdaGrad算法有时在降低学习率方面可能过于剧烈。我们将在 11.10节一节讨论缓解这种情况的策略
  33. RMSProp算法与Adagrad算法非常相似,因为两者都使用梯度的平方来缩放系数。
  34. RMSProp算法与动量法都使用泄漏平均值。但是,RMSProp算法使用该技术来调整按系数顺序的预处理器。
  35. 在实验中,学习率需要由实验者调度。
  36. 系数γ决定了在调整每坐标比例时历史记录的时长。
  37. Adadelta没有学习率参数。相反,它使用参数本身的变化率来调整学习率。
  38. Adadelta需要两个状态变量来存储梯度的二阶导数和参数的变化。
  39. Adadelta使用泄漏的平均值来保持对适当统计数据的运行估计。
  40. Adam算法将许多优化算法的功能结合到了相当强大的更新规则中。
  41. Adam算法在RMSProp算法基础上创建的,还在小批量的随机梯度上使用EWMA。
  42. 在估计动量和二次矩时,Adam算法使用偏差校正来调整缓慢的启动速度。
  43. 对于具有显著差异的梯度,我们可能会遇到收敛性问题。我们可以通过使用更大的小批量或者切换到改进的估计值来修正它们。Yogi提供了这样的替代方案。
  44. 在训练期间逐步降低学习率可以提高准确性,并且减少模型的过拟合。
  45. 在实验中,每当进展趋于稳定时就降低学习率,这是很有效的。从本质上说,这可以确保我们有效地收敛到一个适当的解,也只有这样才能通过降低学习率来减小参数的固有方差。
  46. 余弦调度器在某些计算机视觉问题中很受欢迎。
  47. 优化之前的预热期可以防止发散。
  48. 优化在深度学习中有多种用途。对于同样的训练误差而言,选择不同的优化算法和学习率调度,除了最大限度地减少训练时间,可以导致测试集上不同的泛化和过拟合量。

预训练

  1. word2vec和GloVe等词嵌入模型与上下文无关。它们将相同的预训练向量赋给同一个词,而不考虑词的上下文(如果有的话)。它们很难处理好自然语言中的一词多义或复杂语义。
  2. 对于上下文敏感的词表示,如ELMo和GPT,词的表示依赖于它们的上下文。
  3. ELMo对上下文进行双向编码,但使用特定于任务的架构(然而,为每个自然语言处理任务设计一个特定的体系架构实际上并不容易);而GPT是任务无关的,但是从左到右编码上下文。
  4. BERT结合了这两个方面的优点:它对上下文进行双向编码,并且需要对大量自然语言处理任务进行最小的架构更改。
  5. BERT输入序列的嵌入是词元嵌入、片段嵌入和位置嵌入的和。
  6. 预训练包括两个任务:掩蔽语言模型和下一句预测。前者能够编码双向上下文来表示单词,而后者则显式地建模文本对之间的逻辑关系。
  7. 原始的BERT有两个版本,其中基本模型有1.1亿个参数,大模型有3.4亿个参数。
  8. 在预训练BERT之后,我们可以用它来表示单个文本、文本对或其中的任何词元。
  9. 在实验中,同一个词元在不同的上下文中具有不同的BERT表示。这支持BERT表示是上下文敏感的

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习期末知识点的PDF包含深度学习的重要概念和技术,以下是对PDF内容的回答: 深度学习是一种基于人工神经网络的机器学习方法。它通过对大量数据进行训练来自动学习模式和表示,从而实现对复杂任务的高效处理。深度学习的核心概念包括神经网络、激活函数、损失函数、反向传播算法等。 神经网络是深度学习的基本模块,由多个神经元按层次组成。每个神经元接收上一层神经元的输出,并通过激活函数对输入进行非线性转换。常见的激活函数有Sigmoid、ReLU、Tanh等。神经网络的层数越多,可以表示的复杂模式就越多。 在深度学习损失函数用于度量模型预测与真实值的差异。常见的损失函数有均方误差(MSE)、交叉熵(Cross Entropy)等。模型通过反向传播算法来更新权重,以最小化损失函数。反向传播算法基于链式法则,将梯度从输出层传递到输入层,用于调整每个神经元的权重。 深度学习优化算法用于求解损失函数的最优解。常见的优化算法有随机梯度下降(SGD)、动量法、Adam等。这些算法通过迭代更新权重,使得损失函数逐渐减小。 除了基本概念和技术,深度学习的应用也涵盖了图像识别、语音识别、自然语言处理等领域。深度学习模型结构也在不断发展,如卷积神经网络(CNN)适用于图像处理,循环神经网络(RNN)适用于序列数据。 综上所述,深度学习期末知识点的PDF内容涵盖了深度学习的核心概念、技术和应用。通过学习深度学习的知识,我可以理解神经网络的工作原理,掌握优化算法的选择和应用,以及应用深度学习解决实际问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值