动手学习深度学习 多层感知机部分

原文地址 https://d2l.ai/

4.多层感知机

在本章中,我们将第一次介绍真正的深度网络。 最简单的深度网络称为多层感知机,它们由多层神经元组成, 每一层与它的上一层相连,从中接收输入; 同时每一层也与它的下一层相连,影响当前层的神经元。 当我们训练大容量模型时,我们面临着过拟合的风险。 因此,本章将从基本的概念介绍开始讲起,包括过拟合欠拟合和模型选择。 为了解决这些问题,本章将介绍权重衰减暂退法等正则化技术。 我们还将讨论数值稳定性和参数初始化相关的问题, 这些问题是成功训练深度网络的关键。

多层感知机

前面的章节里,我们学习了如何处理数据,如何将输出转换为有效的概率分布, 并应用适当的损失函数,根据模型参数最小化损失。 我们已经在简单的线性模型背景下掌握了这些知识, 现在我们可以开始对深度神经网络的探索,这也是本书主要涉及的一类模型。

隐藏层

我们在线性变换想一下softmax回归的模型架构。 该模型通过单个仿射变换将我们的输入直接映射到输出,然后进行softmax操作。 如果我们的标签通过仿射变换后确实与我们的输入数据相关,那么这种方法就足够了。 但是,仿射变换中的线性是一个很强的假设。

4.1.1.1. 线性模型可能会出错

例如,线性意味着单调假设: 任何特征的增大都会导致模型输出的增大(如果对应的权重为正), 或者导致模型输出的减小(如果对应的权重为负)。 有时这是有道理的。 例如,如果我们试图预测一个人是否会偿还贷款。 我们可以认为,在其他条件不变的情况下, 收入较高的申请人总是比收入较低的申请人更有可能偿还贷款。 但是,虽然收入与还款概率存在单调性,但它们不是线性相关的。 收入从0增加到5万,可能比从100万增加到105万带来更大的还款可能性。 处理这一问题的一种方法是对我们的数据进行预处理, 使线性变得更合理,如使用收入的对数作为我们的特征。

然而我们可以很容易找出违反单调性的例子。 例如,我们想要根据体温预测死亡率。 对于体温高于37摄氏度的人来说,温度越高风险越大。 然而,对于体温低于37摄氏度的人来说,温度越高风险就越低。 在这种情况下,我们也可以通过一些巧妙的预处理来解决问题。 例如,我们可以使用与37摄氏度的距离作为特征。

但是,如何对猫和狗的图像进行分类呢? 增加位置处像素的强度是否总是增加(或降低)图像描绘狗的似然? 对线性模型的依赖对应于一个隐含的假设, 即区分猫和狗的唯一要求是评估单个像素的强度。 在一个倒置图像后依然保留类别的世界里,这种方法注定会失败。

与我们前面的例子相比,这里的线性很荒谬, 而且我们难以通过简单的预处理来解决这个问题。 这是因为任何像素的重要性都以复杂的方式取决于该像素的上下文(周围像素的值)。 我们的数据可能会有一种表示,这种表示会考虑到我们在特征之间的相关交互作用。 在此表示的基础上建立一个线性模型可能会是合适的, 但我们不知道如何手动计算这么一种表示。 对于深度神经网络,我们使用观测数据来联合学习隐藏层表示和应用于该表示的线性预测器。

在网络中加入隐藏层

我们可以通过在网络中加入一个或多个隐藏层来克服线性模型的限制, 使其能处理更普遍的函数关系类型。 要做到这一点,最简单的方法是将许多全连接层堆叠在一起。 每一层都输出到上面的层,直到生成最后的输出。 我们可以把前𝐿−1L−1层看作表示,把最后一层看作线性预测器。 这种架构通常称为多层感知机(multilayer perceptron),通常缩写为MLP。 下面,我们以图的方式描述了多层感知机( :numref:fig_mlp)。

pic

这个多层感知机有4个输入,3个输出,其隐藏层包含5个隐藏单元。 输入层不涉及任何计算,因此使用此网络产生输出只需要实现隐藏层和输出层的计算。 因此,这个多层感知机中的层数为2。 注意,这两个层都是全连接的。 每个输入都会影响隐藏层中的每个神经元, 而隐藏层中的每个神经元又会影响输出层中的每个神经元。

然而,正如 :numref:subsec_parameterization-cost-fc-layers所说, 具有全连接层的多层感知机的参数开销可能会高得令人望而却步, 即使在不改变输入或输出大小的情况下, 也可能促使在参数节约和模型有效性之间进行权衡 :cite:Zhang.Tay.Zhang.ea.2021

Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with 1 / n 1/n 1/n Parameters 超越具有四元数的全连通层:带 1 / n 1/n 1/n参数的超复数乘法的参数化

pic

pic

通用近似定理

多层感知机可以通过隐藏神经元,捕捉到输入之间复杂的相互作用, 这些神经元依赖于每个输入的值。 我们可以很容易地设计隐藏节点来执行任意计算。 例如,在一对输入上进行基本逻辑操作,多层感知机是通用近似器。 即使是网络只有一个隐藏层,给定足够的神经元和正确的权重, 我们可以对任意函数建模,尽管实际中学习该函数是很困难的。 你可能认为神经网络有点像C语言。 C语言和任何其他现代编程语言一样,能够表达任何可计算的程序。 但实际上,想出一个符合规范的程序才是最困难的部分。

激活函数

激活函数(activation function)通过计算加权和并加上偏置来确定神经元是否应该被激活, 它们将输入信号转换为输出的可微运算。 大多数激活函数都是非线性的。 由于激活函数是深度学习的基础,下面(简要介绍一些常见的激活函数)。

ReLU函数

最受欢迎的激活函数是修正线性单元(Rectified linear unit,ReLU), 因为它实现简单,同时在各种预测任务中表现良好。 [ReLU提供了一种非常简单的非线性变换]。 给定元素𝑥x,ReLU函数被定义为该元素与00的最大值:

(

ReLU(𝑥)=max(𝑥,0).ReLU⁡(x)=max(x,0).

)

通俗地说,ReLU函数通过将相应的活性值设为0,仅保留正元素并丢弃所有负元素。 为了直观感受一下,我们可以画出函数的曲线图。 正如从图中所看到,激活函数是分段线性的。

当输入为负时,ReLU函数的导数为0,而当输入为正时,ReLU函数的导数为1。 注意,当输入值精确等于0时,ReLU函数不可导。 在此时,我们默认使用左侧的导数,即当输入为0时导数为0。 我们可以忽略这种情况,因为输入可能永远都不会是0。 这里引用一句古老的谚语,“如果微妙的边界条件很重要,我们很可能是在研究数学而非工程”, 这个观点正好适用于这里。 下面我们绘制ReLU函数的导数。

使用ReLU的原因是,它求导表现得特别好:要么让参数消失,要么让参数通过。 这使得优化表现的更好,并且ReLU减轻了困扰以往神经网络的梯度消失问题(稍后将详细介绍)。

注意,ReLU函数有许多变体,包括参数化ReLU(Parameterized ReLU,pReLU) 函数 :cite:He.Zhang.Ren.ea.2015。 该变体为ReLU添加了一个线性项,因此即使参数是负的,某些信息仍然可以通过:

pReLU(𝑥)=max(0,𝑥)+𝛼min(0,𝑥).

sigmoid函数

[对于一个定义域在ℝR中的输入, *sigmoid函数*将输入变换为区间(0, 1)上的输出]。 因此,sigmoid通常称为挤压函数(squashing function): 它将范围(-inf, inf)中的任意输入压缩到区间(0, 1)中的某个值:
$$
(

sigmoid(𝑥)=1/(1+exp(−𝑥))

)
$$
在最早的神经网络中,科学家们感兴趣的是对“激发”或“不激发”的生物神经元进行建模。 因此,这一领域的先驱可以一直追溯到人工神经元的发明者麦卡洛克和皮茨,他们专注于阈值单元。 阈值单元在其输入低于某个阈值时取值0,当输入超过阈值时取值1。

当人们的注意力逐渐转移到基于梯度的学习时, sigmoid函数是一个自然的选择,因为它是一个平滑的、可微的阈值单元近似。 当我们想要将输出视作二元分类问题的概率时, sigmoid仍然被广泛用作输出单元上的激活函数 (你可以将sigmoid视为softmax的特例)。 然而,sigmoid在隐藏层中已经较少使用, 它在大部分时候被更简单、更容易训练的ReLU所取代。 在后面关于循环神经网络的章节中,我们将描述利用sigmoid单元来控制时序信息流的架构。

下面,我们绘制sigmoid函数。 注意,当输入接近0时,sigmoid函数接近线性变换。

pic

sigmoid函数的导数为下面的公式:

pic

sigmoid函数的导数图像如下所示。 注意,当输入为0时,sigmoid函数的导数达到最大值0.25; 而输入在任一方向上越远离0点时,导数越接近0。

# 清除以前的梯度
x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))

pic

tanh函数

与sigmoid函数类似, [tanh(双曲正切)函数也能将其输入压缩转换到区间(-1, 1)上]。 tanh函数的公式如下:

(

pic

)

下面我们绘制tanh函数。 注意,当输入在0附近时,tanh函数接近线性变换。 函数的形状类似于sigmoid函数, 不同的是tanh函数关于坐标系原点中心对称。

![pic](C:\毕业设计\pic.PNGy = torch.tanh(x)
d2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 2.5))

pic

tanh函数的导数是:

pic

tanh函数的导数图像如下所示。 当输入接近0时,tanh函数的导数接近最大值1。 与我们在sigmoid函数图像中看到的类似, 输入在任一方向上越远离0点,导数越接近0。

pic

小结

  • 多层感知机在输出层和输入层之间增加一个或多个全连接隐藏层,并通过激活函数转换隐藏层的输出。
  • 常用的激活函数包括ReLU函数、sigmoid函数和tanh函数。

多层感知机的从零开始实现

我们已经在 :numref:sec_mlp中描述了多层感知机(MLP), 现在让我们尝试自己实现一个多层感知机。 为了与之前softmax回归( :numref:sec_softmax_scratch ) 获得的结果进行比较, 我们将继续使用Fashion-MNIST图像分类数据集 ( :numref:sec_fashion_mnist)。

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

回想一下,Fashion-MNIST中的每个图像由 28×28=78428×28=784个灰度像素值组成。 所有图像共分为10个类别。 忽略像素之间的空间结构, 我们可以将每个图像视为具有784个输入特征 和10个类的简单分类数据集。 首先,我们将[实现一个具有单隐藏层的多层感知机, 它包含256个隐藏单元]。 注意,我们可以将这两个变量都视为超参数。 通常,我们选择2的若干次幂作为层的宽度。 因为内存在硬件中的分配和寻址方式,这么做往往可以在计算上更高效。

我们用几个张量来表示我们的参数。 注意,对于每一层我们都要记录一个权重矩阵和一个偏置向量。 跟以前一样,我们要为这些参数的损失的梯度分配内存。

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

激活函数

为了确保我们对模型的细节了如指掌, 我们将[实现ReLU激活函数], 而不是直接调用内置的relu函数。

def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

模型

因为我们忽略了空间结构, 所以我们使用reshape将每个二维图像转换为一个长度为num_inputs的向量。 只需几行代码就可以(实现我们的模型)。

注:@是用来对tensor进行矩阵相乘的:

def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)  # 这里“@”代表矩阵乘法
    return (H@W2 + b2)

损失函数

由于我们已经从零实现过softmax函数( :numref:sec_softmax_scratch), 因此在这里我们直接使用高级API中的内置函数来计算softmax和交叉熵损失。 回想一下我们之前在 :中 对这些复杂问题的讨论。 我们鼓励感兴趣的读者查看损失函数的源代码,以加深对实现细节的了解。

loss = nn.CrossEntropyLoss()

训练

幸运的是,[多层感知机的训练过程与softmax回归的训练过程完全相同]。

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.sum().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

多层感知机的简洁实现

正如你所期待的,我们可以(通过高级API更简洁地实现多层感知机)。

import torch
from torch import nn
from d2l import torch as d2l

模型

与softmax回归的简洁实现( :numref:sec_softmax_concise)相比, 唯一的区别是我们添加了2个全连接层(之前我们只添加了1个全连接层)。 第一层是[隐藏层],它(包含256个隐藏单元,并使用了ReLU激活函数)。 第二层是输出层。

net = nn.Sequential(nn.Flatten(),
n

net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

[训练过程]的实现与我们实现softmax回归时完全相同, 这种模块化设计使我们能够将与和模型架构有关的内容独立出来。

batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

小结

  • 我们可以使用高级API更简洁地实现多层感知机。
  • 对于相同的分类问题,多层感知机的实现与softmax回归的实现相同,只是多层感知机的实现里增加了带有激活函数的隐藏层。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
mlp多层感知机深度学习密切相关。深度学习是一种机器学习的方法,它基于神经网络的多层结构进行建模和训练。多层感知机(MLP)是最简单的神经网络结构之一,也是深度学习中常用的模型之一。 MLP由多个计算层组成,包括输入层、若干个隐层和输出层。每个隐层都由多个隐单元组成,而隐单元的个数是根据数据集的复杂度来确定的。对于简单的数据集,可以选择较少的隐单元,而对于复杂的数据集,可以选择更多的隐单元,甚至可以添加多个隐层。 例如,当我们使用MLP进行分类任务时,可以使用两个隐层,每个隐层都包含10个隐单元。这样的设置可以通过修改MLPClassifier类的hidden_layer_sizes属性来实现。具体的代码如下所示: ``` mlp = MLPClassifier(solver='lbfgs', random_state=0, hidden_layer_sizes=[10, 10]) ``` 这个设置意味着我们有两个隐层,每个隐层都有10个隐单元。 因此,通过使用MLP多层感知机,我们可以实现深度学习中的模型构建和训练,以解决各种机器学习问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [深度学习简介与MLP多层感知机](https://blog.csdn.net/qq_43355223/article/details/86593078)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值