- 博客(4)
- 收藏
- 关注
原创 FDR(False Discovery Rate)矫正
FDR(False Discovery Rate)矫正是一种用于多重假设检验的统计方法,旨在控制错误发现率,即错误地将假设测试判定为显著的比例。与Bonferroni矫正相比,FDR矫正通常更加强大,因为它尝试平衡发现真实效应的能力和控制错误发现的风险。
2024-04-05 15:18:40 3662 1
原创 t检验(t-test)
t检验(t-test)是一种统计检验,用于确定两组数据之间是否存在显著差异。它主要通过比较两组数据的均值差异,并考虑数据的波动性(方差)和样本大小,来评估这些差异是否可能是偶然发生的。t检验的基础是t分布,这是一种当样本量较小且总体方差未知时,用来估计标准正态分布的方法。
2024-04-04 12:23:25 1497
原创 Bonferroni 矫正
Bonferroni 矫正是一种用于多重比较问题中控制第一类错误(即错误地拒绝了真正为空的假设)发生概率的方法。在进行多次统计测试时,即使所有的原假设都是真的,拒绝一个或多个原假设的概率(即犯第一类错误的概率)会随着测试次数的增加而增加。Bonferroni 矫正通过降低单次测试的显著性水平来降低这种错误的整体风险。
2024-04-04 12:22:20 1508
原创 (一)Dynamic Programming
基因组,保守区域,物种间的基因关联,进化的联系,斐波那契数列思想,动态规划计算最佳得分,发现基因改变的路径
2024-03-25 22:11:12 928 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人