Bonferroni 矫正

Bonferroni 矫正是一种用于多重比较问题中控制第一类错误(即错误地拒绝了真正为空的假设)发生概率的方法。在进行多次统计测试时,即使所有的原假设都是真的,拒绝一个或多个原假设的概率(即犯第一类错误的概率)会随着测试次数的增加而增加。Bonferroni 矫正通过降低单次测试的显著性水平来降低这种错误的整体风险。

工作原理

假设你进行了 m次独立的假设测试,每个测试的显著性水平(错误地拒绝一个真正为空的假设的最大允许概率)为 α。不进行任何矫正,进行这 m次测试时至少出现一次第一类错误的概率远大于 α。

显著性水平(通常表示为 α)是你在统计假设检验中愿意接受的犯第一类错误的最大概率,这种错误是指错误地拒绝了真正的零假设(即发现了假阳性)。在假设检验中,我们通常选择一个显著性水平,比如 0.05 或 5%,这意味着我们愿意接受在没有效应的情况下,有 5% 的几率错误地得出结论说效应是存在的。

P值则是在零假设为真的前提下,观察到当前结果或者更极端结果的概率。如果这个 P 值小于预先设定的显著性水平 α,我们会拒绝零假设,认为结果是统计显著的。如果 P 值小于或等于显著性水平,那么结果被认为是统计显著的,这表明在没有实际效应的情况下观察到这样的数据(或更极端的数据)是不太可能的。也就是说p是在假定假设不存在的情况下,有这样结果的概率,p越低,那么就说明假设越可能成立

为了保持整体的第一类错误率不超

### 如何在 SPSS 中应用 Bonferroni 校正进行多重比较调整 在统计分析软件 SPSS 中,可以通过内置功能轻松实现 Bonferroni 校正。以下是关于如何操作的具体说明: #### 使用 Post Hoc 测试中的 Bonferroni 方法 SPSS 提供了一种简便的方法来进行 Bonferroni 校正,尤其是在执行单因素方差分析 (One-Way ANOVA) 后的多重比较阶段。 1. **打开数据文件并运行 One-Way ANOVA** 首先,在菜单栏中依次点击 `Analyze` -> `Compare Means` -> `One-Way ANOVA...` 来启动单因素方差分析对话框[^3]。 2. **设置因变量和因子** 将目标因变量移入 “Dependent List” 框,并将分组变量(即自变量)移入 “Factor” 框。 3. **启用 Post Hoc 多重比较选项** 单击右侧的按钮 `Post Hoc...` 进入多重比较设置窗口。在此窗口中勾选 `Bonferroni` 选项以激活该方法用于校正 p 值[^1]。 4. **完成配置并查看结果** 返回主界面后继续点击 OK 或 Paste 完成命令提交。如果选择了 Paste,则可以在语法编辑器中看到类似以下的语句: ```spss ONEWAY dependent_variable BY factor_variable /POSTHOC=BONFERRONI. ``` 上述过程会自动处理所有可能的两两对比,并基于总的测试数量动态调整每一对比的实际显著性水平 α/n[^2]。 #### 自定义手动实施 Bonferroni 调整 除了利用内置工具外,还可以通过手工方式计算经过 Bonferroni 校准后的临界值或者直接修改原始 P 值。例如,假如总共进行了 m 次独立检验,则新的个体检验标准应设为原定α/m;相应地,任何未经修正前低于此限界的P值均需乘上m倍数再重新评估其是否仍小于初始设定阈值0.05才能判定为具有统计学意义。 ```spss COMPUTE corrected_p = original_p * number_of_tests . EXECUTE . ``` 以上代码片段展示了怎样创建一个新的变量存储经由Bonferroni矫正过的p值列表。 --- ### 结论 无论是采用图形化用户接口还是编写脚本形式,SPSS都能很好地支持研究者们顺利完成针对多组样本间差异性的探索工作并通过合适的手段控制错误发现率(FWER),比如这里提到的经典Bonferroni技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值