Bonferroni 矫正是一种用于多重比较问题中控制第一类错误(即错误地拒绝了真正为空的假设)发生概率的方法。在进行多次统计测试时,即使所有的原假设都是真的,拒绝一个或多个原假设的概率(即犯第一类错误的概率)会随着测试次数的增加而增加。Bonferroni 矫正通过降低单次测试的显著性水平来降低这种错误的整体风险。
工作原理
假设你进行了 m次独立的假设测试,每个测试的显著性水平(错误地拒绝一个真正为空的假设的最大允许概率)为 α。不进行任何矫正,进行这 m次测试时至少出现一次第一类错误的概率远大于 α。
显著性水平(通常表示为 α)是你在统计假设检验中愿意接受的犯第一类错误的最大概率,这种错误是指错误地拒绝了真正的零假设(即发现了假阳性)。在假设检验中,我们通常选择一个显著性水平,比如 0.05 或 5%,这意味着我们愿意接受在没有效应的情况下,有 5% 的几率错误地得出结论说效应是存在的。
P值则是在零假设为真的前提下,观察到当前结果或者更极端结果的概率。如果这个 P 值小于预先设定的显著性水平 α,我们会拒绝零假设,认为结果是统计显著的。如果 P 值小于或等于显著性水平,那么结果被认为是统计显著的,这表明在没有实际效应的情况下观察到这样的数据(或更极端的数据)是不太可能的。也就是说p是在假定假设不存在的情况下,有这样结果的概率,p越低,那么就说明假设越可能成立
为了保持整体的第一类错误率不超