FDR(False Discovery Rate)矫正是一种用于多重假设检验的统计方法,旨在控制错误发现率,即错误地将假设测试判定为显著的比例。与Bonferroni矫正相比,FDR矫正通常更加强大,因为它尝试平衡发现真实效应的能力和控制错误发现的风险。
FDR矫正的概念
- 错误发现率(FDR):在多次假设检验中,FDR是错误拒绝的零假设数(即假阳性)与拒绝的总假设数(即所有判定为显著的结果数)的比例的期望值。
- q值:每项测试的FDR相对应的p值,可以理解为在给定的假设检验中,该特定发现被错误地认定为显著的最大预期比例。
FDR矫正的方法
最常用的FDR控制方法是Benjamini-Hochberg(B-H)步骤上升程序。这个过程如下:
1..将一系列的p值按照从大到小排序,然后利用下述公式计算每个p值所对应的FDR值。
公式:p * (n/i), p是这一次检验的pvalue,n是检验的次数,i是排序后的位置ID(如最大的P值的i值肯定为n,第二大则是n-1,依次至最小为1)。
2.将计算出来的FDR值赋予给排序后的p值,如果某一个p值所对应的FDR值大于前一位p值(排序的前一位)所对应的FDR值,则放弃公式计算出来的FDR值,选用与它前一位相同的值。因此会产生连续相同FDR值的现象;反之则保留计算的FDR值。
3. 将FDR值按照最初始的p值的顺序进行重新排序,返回结果。
最后我们就可以使用校正后的P值进行后续的