2025年中国算力市场在政策支持、技术突破与行业需求的多重驱动下,呈现高速发展态势。
据预测,到2026年我国算力租赁潜在收入市场规模有望达到2600亿元。
算力作为数字经济时代的核心生产力,对推动技术产业进步、加速数字技术与实体经济深度融合发挥着重要作用。
然而算力资源供需结构失衡、算力调度受限制、行业一体化解决方案缺失等问题,严重影响了企业智能化转型进程,致使企业无法充分利用算力提升产业效能。
当前企业面临的主要问题有:
1
成本压力大
算力调度涉及大量硬件设备、软件平台和人力资源,成本高昂,对于中小企业而言,难以承受 AI 算力调度的高昂成本且收益不能快速显现。
2
算力调度效率低
受系统架构、算法优化等方面限制,许多算力调度系统处理大规模数据时效率低,部分算力资源在空闲时段未得到充分利用,造成资源浪费。
3
缺少行业一体化解决方案
算力资源在企业实际应用阶段存在技术落地障碍,这限制了算力应用的深度和广度。由于不同行业特点与需求不同,实际应用层需结合企业实际使用场景定制应用服务。
4
算力资源分配不均
算力资源存在地域性差异,中西部地区相对匮乏,部分地区算力紧张,而部分地区闲置,造成资源浪费。
针对上述算力市场发展中的挑战,中小企业该如何低成本获取算力资源?
01
灵活选择算力服务模式
自建算力中心运维成本高、周期长,无法满足企业及时性、突发性或者短期项目需求。
企业可选择算力租赁服务,按需付费即开即用,无需一次性投入大量资金购买硬件设备,降低了前期成本。
而且算力租赁可根据业务需求灵活调整,在业务高峰期增加算力,低谷期减少算力,避免资源闲置浪费。
02
优化算力使用策略
建立智能化的算力资源调度系统,根据业务的优先级、实时性要求以及不同地区的算力资源状况,动态调整资源分配,提高资源的整体利用效率。
03
异构算力资源池
异构算力资源池整合多元化算力、统一调度和弹性服务,聚焦核心业务创新,而非硬件投入。
通过平台API即可按需调用,降低技术开发和运维成本。这一模式更适合AI研发、大数据处理、智能制造等对算力需求多样,但预算有限的中小企业。
04
一站式算力与AI应用服务
通过将算力资源、AI 开发工具、模型训练与部署等全链条能力整合为统一平台,为企业提供“从算力供给到AI落地”的端到端服务。
打破原先割裂状态,解决算力过剩、算力不足、模型与硬件兼容性差等问题。
实现技术集成与生态协同,帮助企业以更低成本、更高效率实现智能化升级。
05
企业定制化解决方案
通过精准适配企业需求、强化场景应用、应对行业风险合规等方面,帮助企业从 “算力资源使用者”转变为“AI价值创造者”。
针对于当下算力成本高、高端技术快速迭代的背景下,定制化服务成为企业提升AI落地效率、构建品牌差异化竞争力的关键路径。
关于万云智算
万云智算通过API直连东数西算节点、京津冀、长三角等10大核心区域,超50个机房,将分散的CPU、GPU、存储等资源整合为“算力资源池”,并通过智能调度引擎实现毫秒级匹配。
通过“算力资源+AI平台+场景化工具”的一体化方案,将算力基础与AI开发服务一体化。并根据特定业务场景和需求进行大模型训练和优化,精准解决企业实际问题,推动业务模式创新,实现“资源即服务”。