co-learning:learning from noisy labels with self-supervision 解读

co-learning:learning from noisy labels with self-supervision

摘要

受到co-training的启发,作者将supervised learning和self-supervised learning 结合起来。
The constraints of intrinsic similarity with the self-supervised module and the structural similarity with the noisily-supervised module are imposed on a shared common feature encoder to regularize the network to maximize the agreement between the two constraints。

novelties

训练了一个单一的共享的encoder,有两个头,分别是self-supervised 和 noisily-supervised, 这两个互相约束,maximizes the agreement between them in latent space:

  1. self-supervised learning 作为一个feature-independent view来辅助supervised learning。
  2. 有一个共享的feature encoder,但是有两个不一样的头。projection head 负责self-supervised learning,探索和特征相关的信息。classifier head执行监督学习,学习和标签相关的信息。
    作者提出的unsupervised learning 隐式的帮助从noisy labels中学习。作者尝试证明了不同的views,可以给出更多可靠的信息,尤其是面对noisy training data。作者提出,传统的方法想要在两个模型的预测上取得最
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值