F.dropout,nn.Dropout的验证使用,参数training,inplace

F.dropout 是一个函数,参数包含输入的tensor,概率和training 为真还是假。当training 是真的时候,才会将一部分元素置为0,其他元素会乘以 scale 1/(1-p). training 为false的时候,dropout不起作用。默认情况下training是True。

nn.Dropout 是一个类,参数只有两个,概率和inplace,返回的是一个对象,对象的参数是input的tensor,返回的是处理之后的tensor。在构造对象的时候,inplace如果设置成true,那么原来的input 也会发生改变,和输出一样。默认inplace是False。

import torch
import torch.nn as nn
import torch.nn.functional as F

if __name__ == '__main__':

    input = torch.randn(5, 5)

    output1 = F.dropout(input,p=0.5, training = True)
    print(input,'\n' ,output1)
    m = nn.Dropout(p=0.5,inplace=True)
    output2 = m(input)
    # output = m(input)
    print(input,'\n' ,output2,'\n' ,(input==output2))

    output3 = F.dropout(input, p=0.5, training=False)
    print(input, '\n', output3,'\n',(input==output3).all())

输出:

可以看到在第一个tensor的输出部分元素被置为0,未被置为0的元素值 扩大了2倍(1/(1-0.5)).

inplace设置为True,输入会被输出覆盖。training设置为False的时候,输出不发生变化,相当于是identity 矩阵。

tensor([[ 1.2217,  0.0197,  1.6543, -0.2873, -1.8832],
        [ 0.9392, -0.4237,  0.2885, -1.2082,  0.3996],
        [ 1.2309, -0.1735, -0.4891,  0.2473, -1.3866],
        [ 1.1813,  1.4792,  0.1614, -0.3758,  0.4791],
        [ 1.4066,  0.6809,  1.1930, -0.6618,  1.1439]]) 
 tensor([[ 0.0000,  0.0000,  0.0000, -0.0000, -0.0000],
        [ 1.8785, -0.0000,  0.0000, -2.4164,  0.0000],
        [ 2.4619, -0.0000, -0.9783,  0.4946, -2.7733],
        [ 2.3626,  0.0000,  0.0000, -0.7517,  0.0000],
        [ 0.0000,  1.3618,  2.3861, -1.3235,  0.0000]])
tensor([[ 2.4434,  0.0394,  3.3086, -0.5745, -0.0000],
        [ 0.0000, -0.8475,  0.0000, -0.0000,  0.0000],
        [ 0.0000, -0.3470, -0.9783,  0.4946, -2.7733],
        [ 0.0000,  2.9584,  0.0000, -0.0000,  0.9582],
        [ 0.0000,  0.0000,  2.3861, -0.0000,  2.2878]]) 
 tensor([[ 2.4434,  0.0394,  3.3086, -0.5745, -0.0000],
        [ 0.0000, -0.8475,  0.0000, -0.0000,  0.0000],
        [ 0.0000, -0.3470, -0.9783,  0.4946, -2.7733],
        [ 0.0000,  2.9584,  0.0000, -0.0000,  0.9582],
        [ 0.0000,  0.0000,  2.3861, -0.0000,  2.2878]]) 
tensor([[True, True, True, True, True],
        [True, True, True, True, True],
        [True, True, True, True, True],
        [True, True, True, True, True],
        [True, True, True, True, True]])
tensor([[ 2.4434,  0.0394,  3.3086, -0.5745, -0.0000],
        [ 0.0000, -0.8475,  0.0000, -0.0000,  0.0000],
        [ 0.0000, -0.3470, -0.9783,  0.4946, -2.7733],
        [ 0.0000,  2.9584,  0.0000, -0.0000,  0.9582],
        [ 0.0000,  0.0000,  2.3861, -0.0000,  2.2878]]) 
 tensor([[ 2.4434,  0.0394,  3.3086, -0.5745, -0.0000],
        [ 0.0000, -0.8475,  0.0000, -0.0000,  0.0000],
        [ 0.0000, -0.3470, -0.9783,  0.4946, -2.7733],
        [ 0.0000,  2.9584,  0.0000, -0.0000,  0.9582],
        [ 0.0000,  0.0000,  2.3861, -0.0000,  2.2878]]) 
 tensor(True)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值