supervised contrastive learning 解读

SupCon 定义:

Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes.

novelties:

属于同一类的归一化后的特征表示靠得越近越好,不同类的靠的越远越好。并且,一个anchor 样本,具有多个正样本,sel-sup 通常只用一个正样本;负样本也是多个。

传统的limitations:

cross-entropy loss的缺陷:面对噪声标签,鲁棒性差,possibility of poor margins ??

传统的方法,在大数据集上的实验效果不好,比如说Imagenet。

triplet loss每个anchor样本只对比一个正样本和负样本,

N-pair loss 每个anchor样本,一个正样本,多个负样本。

Related work

Merging the findings of our paper and CCLP is a promising direction for semi-supervised learning research.

self-supervised learning 和 supervised contrastive 对比

左侧是self-sup,在特征表示空间,即使是同一类的样本也会距离比较远,右侧是有监督的对比学习,同一类样本,相距比较近。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
对比式自监督学习是一种无监督学习的方法,旨在通过通过训练模型来学习数据的表示。这种方法在计算机视觉领域中得到了广泛的应用。 对比式自监督学习的核心思想是通过将数据例子与其在时间或空间上的某种变形或扭曲版本对比,来训练模型。这种对比鼓励模型捕捉到数据的关键特征,从而学习到更好的表示。 对比式自监督学习的一个常见应用是图像的自学习。通过将图像进行旋转、剪切、缩放等变形,来构建一个正样本(原始图像)和负样本(变形图像)对。然后将这些对输入到一个深度神经网络中进行训练,以学习图像表示。训练过程中,网络被要求将正样本和负样本区分开,从而学习到图像的特征。 对比式自监督学习有许多优点。首先,它不需要标注数据,使其适用于大规模的无标签数据。其次,由于数据自动生成,可以轻松地扩展到大数据集。另外,对比式自监督学习的模型可以用于其他任务的迁移学习,使得模型更通用。 然而,对比式自监督学习也存在一些挑战和限制。首先,生成变形样本的过程可能会降低数据的质量,从而降低学习效果。其次,选择合适的变形方式和参数也是一个挑战。另外,对于某些领域和任务,对比式自监督学习可能不适用或效果不佳。 总之,对比式自监督学习是一种有效的无监督学习方法,可用于数据表示学习。它在计算机视觉领域有着广泛的应用,并具有许多优点。然而,仍然需要进一步的研究和发展来克服其中的挑战和限制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值