RAG(检索增强生成 )

📑前言

本文主要是【RAG】——RAG(检索增强生成 )的文章,如果有什么需要改进的地方还请大佬指出⛺️

🎬作者简介:大家好,我是听风与他🥇
☁️博客首页:CSDN主页听风与他
🌄每日一句:狠狠沉淀,顶峰相见

RAG

1.RAG定义

  • llm是一个预训练的模型,这就决定了llm自身无法实时更新模型中的知识,由此,业界已经形成了通过RAG(Retrieval Augmented Generation)等外接知识库等方式快速扩展llm知识。
  • RAG的增强阶段可以在pre-training预训练,Fine-tuning微调,Inference推理三个阶段;从增强的数据源,包括非结构化数据,结构化数据和llm生成的内容三个途径。

2.RAG技术演化

  • RAG通过优化检索器、生成器等关键部分,为大模型中的复杂知识密集型任务提供了更高效的解决任务。
  • 检索阶段:利用编码模型根据问题检索相关文档。
  • 生成阶段:将检索到的上下文作为条件,系统生成文本。

3.RAG优势

结合检索系统和生成模型。能利用最新信息,提高答案质量,具有更好的可解释性和适应性。简单来说,就是实时更新检索库。

LangChain实现RAG

1.基础环境准备

pip install langchain openai weaviate-client

2.在项目根目录创建.env文件,用来存放相关配置(configuration.env)

OPENAI_API_KEY="此处添openai的api_key"

3.准备一个矢量数据库来保存所有附加信息的外部知识源。

3.1 加载数据

  • 这里选择斗破苍穹.txt作为文档输出,要加载到langchain中的TextLoader中
from langchain.document_loaders import TextLoader
loader = TextLoader('./a.txt')
documents = loader.load()

3.2数据分块

  • 因为文档在其原始状态下太长,无法放入大模型的上下文窗口,所以需要将其分成更小的部分。LangChain 内置了许多用于文本的分割器。这里使用 chunk_size 约为 1024 且 chunk_overlap 为128 的 CharacterTextSplitter 来保持块之间的文本连续性。
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=128)
chunks = text_splitter.split_documents(documents)

3.3数据块存储

  • 要启用跨文本块的语义搜索,需要为每个块生成向量嵌入,然后将它们与其嵌入存储在一起。要生成向量嵌入,可以使用 OpenAI 嵌入模型,并使用 Weaviate 向量数据库来进行存储。通过调用 .from_documents(),矢量数据库会自动填充块。
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Weaviate
import weaviate
from weaviate.embedded import EmbeddedOptions

client = weaviate.Client(
  embedded_options = EmbeddedOptions()
)

vectorstore = Weaviate.from_documents(
    client = client,    
    documents = chunks,
    embedding = OpenAIEmbeddings(),
    by_text = False
)

RAG实现

1.数据检索

  • 将数据存入矢量数据库后,就可以将其定义为检索器组件,该组件根据用户查询和嵌入块之间的语义相似性获取相关上下文。
retriever = vectorstore.as_retriever()

2.提示增强

  • 完成数据检索之后,就可以使用相关上下文来增强提示。在这个过程中需要准备一个提示模板。可以通过提示模板轻松自定义提示,如下所示。
from langchain.prompts import ChatPromptTemplate
template = """你是一个问答机器人助手,请使用以下检索到的上下文来回答问题,如果你不知道答案,就说你不知道。问题是:{question},上下文: {context},答案是:
"""
prompt = ChatPromptTemplate.from_template(template)

3.答案生成

  • 利用 RAG 管道构建一条链,将检索器、提示模板和 LLM 链接在一起。定义了 RAG 链,就可以调用它了。
from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

rag_chain = (
    {"context": retriever,  "question": RunnablePassthrough()} 
    | prompt 
    | llm
    | StrOutputParser() 
)

query = "萧炎的表妹是谁?"
res=rag_chain.invoke(query)
print(f'答案:{res}')

📑文章末尾

在这里插入图片描述

  • 16
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风与他

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值