算法之回溯篇【N皇后II】超详细的递归回溯过程

一、题目

1、题目介绍

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
在这里插入图片描述

上图为 8 皇后问题的一种解法。
给定一个整数 n,返回 n 皇后不同的解决方案的数量。
示例:
输入: 4
输出: 2
解释: 4 皇后问题存在如下两个不同的解法。
[
[“.Q…”, // 解法 1
“…Q”,
“Q…”,
“…Q.”],
[“…Q.”, // 解法 2
“Q…”,
“…Q”,
“.Q…”]
]

2、题目分析

在这里插入图片描述

分析都在源代码里

3、本题源代码

class Solution {

    private int number=0;
    public int totalNQueens(int n) {
      char[][] board=new char[n][n];
      backtrack(board,n,0);
      return number;
    }
    public void backtrack(char[][] board,int n,int row)
    {
        /**【1】递归的结束条件*/
       if(row==n) {//如果当前的行等于棋盘的行数,就成功返回,并number+1
           number++;
           return;
       }
       /**一列一列地判断*/
       for(int i=0;i<n;i++){
           if(isPlace(n,board,row,i)) {
               /**【2】做出选择*/
               board[row][i] = 'Q';//没冲突可以添加皇后
               /**【3】递归*/
               backtrack(board, n, row + 1);//继续下一行添加皇后
               /**【4】撤销*/
               board[row][i] = '.';//撤销到上一步状态,继续寻找其它位置
           }
       }
    }
    /**判断是否可以添加皇后的函数*/
    public boolean isPlace(int n,char [][] board,int row,int col){//row,col表示当前皇后添加的行与列
         //判断是否有冲突列
      for(int i=0;i<row;i++) {
           if(board[i][col]=='Q')
               return false;
      }
      //判断正方向对角线是否有冲突、
        for(int i=row-1,j=col-1;i>=0&&j>=0;j--,i--){
            if(board[i][j]=='Q')
                return false;
        }
      //判断反方向对角线是否有冲突  
        for(int i=row-1,j=col+1;i>=0&&j<n;i--,j++) {
            if (board[i][j] == 'Q')
                return false;
        }
        return true;
    }
}

4、以N=3为例,详细的执行树型图解

总结!

继续加油!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

语言-逆行者

一起交流学习

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值