自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 创新项目实训--解题页面前端2

【代码】创新项目实训--解题页面前端2。

2024-06-24 13:05:13 613

原创 创新项目实训--解题页面前端

这篇博客介绍的内容是有关于网页前端的该组件显示聊天记录,并支持文本、图片、文件等多种类型的消息。

2024-06-24 12:57:06 1031

原创 创新项目实训--引入RAG技术生成题目

这部分代码的主要作用是实现一个基于聊天模型的交互系统,用于生成数学题并根据提供的上下文和历史记录生成相应的答案。首先,导入所需要的包。

2024-06-24 12:43:05 230

原创 创新项目实训--题目向量编码

这段代码的作用是将一组数学问题的文本数据转化为向量,并使用 FAISS 向量数据库进行存储,以便后续进行快速的相似性搜索。

2024-06-24 12:36:46 374

原创 创新项目实训-基于大模型的小学语数英辅助教育平台(6)

HuggingFace中封装了prefix的相关操作的实现,本次主要初次探索一下其使用,首先在已经适配好的模型上进行试验,其次手动配置使其适配自己的模型,为下一步配置Qwen并进行微调做准备。

2024-05-30 21:27:16 355

原创 创新项目实训--多轮生成最优解

在推理过程中(尤其是数学推理),单个错误可能导致整个解答无效,而现有的自动回归模型缺乏自我纠错的机制,一旦解决方案偏离正确路径,通常就无法恢复。让大模型生成多个候选解答,然后通过验证器打分,并选择评分最高的作为结果。因此,这篇博客介绍的是采用COT思维链技术,让大模型依据提问多次返回结果,再从中选择出结果最好的内容。这段代码的作用是创建一个聊天模型系统,用于处理用户消息,并生成合适的响应。这段代码主要是为了设置一个交互式的聊天系统,该系统能够根据用户提供的会话ID管理聊天历史记录,并生成数学题和答案。

2024-05-28 11:17:54 161

原创 创新项目实训-基于大模型的小学语数英辅助教育平台(5)

引入COT技术。

2024-05-20 11:16:32 222

原创 创新项目实训-COT技术的总结与应用

在审阅阶段随机抽样训练数据中的问题,插入离题句子,创建包含多样化噪声上下文的示例问题,引导大模型明确指出在推理过程中应关注的关键句子。由于大模型是从语料库中学习的模型参数,并且使用时参数是固定的,因此大模型中的知识是有限的,而引入外部知识补足大模型的缺陷就显得尤为重要。集成学习在CoT中也同样适用,wang等人提出了三种方法来实现理由增强的集成(Rationale-Augmented Ensembles),这些方法的关键在于从输出空间中进行推理采样,通过不同的方式引入随机性和多样性来提高模型的性能。

2024-05-20 11:14:30 1182

原创 创新项目实训-PAI平台微调

可以观察到CPU和GPU使用率如上,接下来还可以进一步部署模型。调用DLC资源开始训练,训练平台可以监督训练过程,截图如下。

2024-05-13 11:35:30 236 1

原创 创新项目实训--基于大模型的小学语数英辅助教育平台(4)

实现了FreeChat界面,用户可与大模型自由对话。

2024-05-08 01:03:33 193 1

原创 创新项目实训-PAI平台的初步尝试

在左侧导航栏单击工作空间列表,在工作空间列表页面中单击待操作的工作空间名称,进入对应工作空间内。在工作空间页面的左侧导航栏选择模型开发与训练 > 分布式训练(DLC),在分布式训练任务页面中单击新建任务,进入新建任务页面。进入DSW页面,登录PAI控制台,在概览页面选择目标地域,在左侧导航栏单击工作空间列表,在工作空间列表页面中单击待操作的工作空间名称,进入对应工作空间内。在工作空间页面的左侧导航栏选择模型开发与训练 > 交互式建模(DSW),进入DSW页面。配置好相关参数后,点击提交任务,即可开始训练。

2024-05-07 11:24:49 306

原创 创新项目实训--基于大模型的小学语数英辅助教育平台(3)

由于在模型的微调训练中需要用到知识点标签,在获得基础的数据集后,对数据集进行处理,打上知识点标签。设计、编写了一个dataProcess程序来完成这个任务。这个程序主要由以下几个部分组成。1.调用接口。2.提示词与请求函数。3.处理response的代码4.异常捕捉与处理代码将数据集分割为几部分,每人负责标记一部分数据。

2024-04-28 22:28:06 683

原创 创新项目实训-数据预处理

该数据集包含了210,000条中国小学数学题,并将数据集分为train,test,valid集。由于微调大模型的任务需要,我们要给每道题目附上标签,标签代表该题所包含的知识点或者题目类型。1利用信息检索课程中学习的知识,把题目和知识点分别编成向量,比较相似度从题库里找匹配的知识点。最后,在同学院的老师交流后,老师提供给我们一种全新的思路,利用大模型进行文本分类。同时,为了加快处理数据集的速度,将数据集分为5份,分给小组成员。3采用无监督训练,自监督训练的方式,不需要标签。2循环调用大模型进行文本分类。

2024-04-27 20:52:13 377

原创 创新项目实训--基于大模型的小学语数英辅助教育平台(2)

项目采用Qwen1.5-7B-chat,LoRa训练要求20G显存左右,故试采用阿里云PAI平台DSW服务,配合魔搭生态便于微调。

2024-04-25 00:23:04 682

原创 创新项目实训--生成题库(1)

另外,virtual token的位置也不一定是前缀,插入的位置是可选的。BERTScore是一种用于评估文本相似性的指标,它基于预训练的语言模型BERT(Bidirectional Encoder Representations from Transformers),通过比较两个文本之间的嵌入表示来计算它们的相似性分数。具体伟在输入token之前构造一段任务相关的virtual tokens作为Prefix,然后训练的时候只更新Prefix部分的参数,而PLM中的其他部分参数固定。

2024-04-15 20:19:09 182 1

原创 创新项目实训--基于大模型的小学语数英辅助教育平台(1)

项目目标:基于开源的大语言模型,结合大模型微调技术,搭建一站式辅助教育平台,整合题库生成、作文修改等功能,实现个性化和智能化的教育过程。随着人工智能技术的飞速进步,教育领域正在迎来一场革命。AI大模型如GPT-3.5的出现不仅为教育提供了新的发展机遇,也对其提出了挑战。这些技术推动着教育变革,为教育提供了更智能化和个性化的方式。AI大模型可以充当教学助手,通过自然语言处理和推理能力回答学生问题、提供解释,帮助他们更好地理解知识。这种方式打破了传统教育的限制,让学生随时随地获得高质量的教学服务。

2024-04-15 19:44:57 1103 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除